Comptes Rendus
Article de synthèse
Review of the matched asymptotic approach of the coupled criterion
[Revue de l’approche asymptotique du critère couplé]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 339-357.

Les développements asymptotiques raccordés constituent une technique mathématique puissante, largement applicable dans divers domaines de l’ingénierie. L’une de leurs principales utilisations se situe en mécanique de la rupture, où ils permettent d’obtenir des approximations précises à proximité de la pointe des fissures tout en maintenant une faible complexité de calcul. Cette méthode peut être intégrée de manière fluide au critère couplé (CC), qui permet de prédire l’amorçage et la propagation des fissures dans les matériaux fragiles. Cet article explique comment la technique des développements asymptotiques raccordés peut être utilisée conjointement avec le critère couplé dans le cadre de la mécanique de la rupture, tout en offrant une revue détaillée de la littérature sur les avancées réalisées au cours de la dernière décennie.

Matched Asymptotics is a powerful mathematical technique with broad applicability in various engineering fields. One of its key uses is in Fracture Mechanics, where it provides accurate approximations in the vicinity of the crack tip with low computational complexity. This method can be seamlessly integrated with the Coupled Criterion (CC), which enables the prediction of crack nucleation and propagation in brittle materials. Hence, this paper deeply explains how the MA technique can be applied together with the CC in the context of Fracture Mechanics, providing a detailed literature review of the advances made in the last decade.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.285
Keywords: Matched asymptotic expansion, Coupled criterion, Fracture mechanics
Mots-clés : Développement asymptotique raccordé, Critère couplé, Mécanique de la rupture

Sara Jiménez-Alfaro 1, 2 ; Israel García García 3 ; Aurélien Doitrand 4

1 Department of Civil and Environmental Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
2 Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
3 Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, Escuela Técnica Superior de Ingeniería, Escuela Politécnica Superior, Universidad de Sevilla, Camino de los Descubrimienos s/n, 41092 Sevilla, Spain
4 Université Lyon, INSA-Lyon, UCBL, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_339_0,
     author = {Sara Jim\'enez-Alfaro and Israel Garc{\'\i}a Garc{\'\i}a and Aur\'elien Doitrand},
     title = {Review of the matched asymptotic approach of the coupled criterion},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {339--357},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.285},
     language = {en},
}
TY  - JOUR
AU  - Sara Jiménez-Alfaro
AU  - Israel García García
AU  - Aurélien Doitrand
TI  - Review of the matched asymptotic approach of the coupled criterion
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 339
EP  - 357
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.285
LA  - en
ID  - CRMECA_2025__353_G1_339_0
ER  - 
%0 Journal Article
%A Sara Jiménez-Alfaro
%A Israel García García
%A Aurélien Doitrand
%T Review of the matched asymptotic approach of the coupled criterion
%J Comptes Rendus. Mécanique
%D 2025
%P 339-357
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.285
%G en
%F CRMECA_2025__353_G1_339_0
Sara Jiménez-Alfaro; Israel García García; Aurélien Doitrand. Review of the matched asymptotic approach of the coupled criterion. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 339-357. doi : 10.5802/crmeca.285. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.285/

[1] M. Van Dyke Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964

[2] D. Leguillon; E. Sanchez-Palencia Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, USA, 1987 | DOI

[3] P. Lagerstrom Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, 76, Springer, Berlin, 1988 | DOI

[4] J. Kevorkian; J. Cole Multiple scale and singular perturbation methods, 114, Springer Science & Business Media, New York, 2012 | DOI

[5] R. O’Malley The Method of Matched Asymptotic Expansions and Its Generalizations, Historical Developments in Singular Perturbations, Springer, Cham, 2014 | DOI

[6] F. Lene; D. Leguillon Homogenized constitutive law for a partialy cohesive composite material, Int. J. Solids Struct., Volume 18 (1982) no. 5, pp. 443-458 | DOI

[7] A. Bensoussan; L. Lions; G. Papanicolaou Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Application, 5, North-Holland, Amsterdam, 1978

[8] D. Leguillon Comparison of matched asymptotics, multiple scalings and averages in homogenization of periodic structures, Math. Models Methods Appl. Sci., Volume 07 (1997) no. 05, pp. 663-680 | DOI

[9] D. Leguillon; E. Sanchez-Palencia Approximation of a two dimensional problem of junctions, Comput. Mech., Volume 6 (1990), pp. 435-455 | DOI

[10] D. Leguillon Asymptotic and numerical analysis of a crack branching in non-isotropic materials, Eur. J. Mech. Solids, Volume 12 (1993), pp. 33-51

[11] P. Sicsic; J. Marigo From gradient damage laws to Griffith’s theory of crack propagation, J. Elast., Volume 113 (2013) no. 1, pp. 55-74 | DOI

[12] J. Cook; J. Gordon A mechanism for the control of crack propagation in all-brittle systems, Proc. R. Soc. A, Volume 282 (1964), pp. 508-520 | DOI

[13] D. Leguillon; C. Lacroix; E. Martin Interface debonding ahead of a primary crack, J. Mech. Phys. Solids, Volume 48 (2000) no. 10, pp. 2137-2161 | DOI

[14] D. Leguillon A method based on singularity theory to predict edge delamination of laminates, Int. J. Fract., Volume 100 (1999) no. 1, pp. 105-120 | DOI

[15] D. Leguillon; E. Sanchez-Palencia On 3D cracks intersecting a free surface in laminated composites, Int. J. Fract., Volume 99 (1999) no. 1, pp. 25-40 | DOI

[16] D. Leguillon Interface crack tip singularity with contact and friction, C. R. Acad. Sci. IIB, Volume 327 (1999) no. 5, pp. 437-442 | DOI

[17] D. Leguillon; R. Abdelmoula Mode III near and far fields for a crack lying in or along a joint, Intl J. Solids Struct., Volume 37 (2000) no. 19, pp. 2651-2672 | DOI

[18] J. Leblond; D. Leguillon The stress intensity factors near an angular point on the front of an interface crack, Eur. J. Mech. A Solids, Volume 18 (1999) no. 5, pp. 837-857 | DOI

[19] M. Williams Stress singularities resulting from various boundary condition sinangular corners of plates inextension, J. Appl. Mech., Volume 19 (1952), pp. 526-528 | DOI

[20] D. Leguillon A criterion for crack nucleation at a notch in homogeneous materials, C. R. Acad. Sci. IIB, Volume 329 (2001) no. 2, pp. 97-102 | DOI

[21] D. Leguillon Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. A Solids, Volume 21 (2002) no. 1, pp. 61-72 | DOI

[22] P. Weißgraeber; D. Leguillon; W. Becker A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016) no. 1–2, pp. 375-401 | DOI

[23] A. Doitrand; T. Duminy; H. Girard; X. Chen A review of the coupled criterion, preprint, 2024 | HAL

[24] A. Sapora; A. Torabi; S. Etesam; P. Cornetti Finite Fracture Mechanics crack initiation from a circular hole, Fatigue Fract. Eng. Mater. Struct., Volume 41 (2018) no. 7, pp. 1627-1636 | DOI

[25] P. Cornetti; A. Sapora Penny-shaped cracks by Finite Fracture Mechanics, Int. J. Fract., Volume 219 (2019), pp. 153-159 | DOI

[26] T. Methfessel; C. El Yaakoubi-Mesbah; W. Becker Failure analysis of crack-prone joints with Finite Fracture Mechanics using an advanced modeling approach for the adhesive layer, Int. J. Adhesion Adhesives, Volume 130 (2024), 103608 | DOI

[27] M. Kashtalyan; I. García; V. Mantič Evolution of crack density in cross-ply laminates—application of a coupled stress and energy criterion, Key Eng. Mater., Volume 713 (2016), pp. 262-265 | DOI

[28] A. Doitrand; C. Fagiano; N. Carrére; V. Chiaruttini; M. Hirsekorn Damage onset modeling in woven composites based on a coupled stress and energy criterion, Eng. Fract. Mech., Volume 169 (2017), pp. 189-200 | DOI

[29] J. Li; E. Martin; D. Leguillon; C. Dupin A finite fracture model for the analysis of multi-cracking in woven ceramic matrix composites, Composites B, Volume 139 (2018), pp. 75-83 | DOI

[30] J. Vereecke; C. Bois; J. Wahl; T. Briand; L. Ballère; F. Lavelle Explicit modelling of meso-scale damage in laminated composites—comparison between finite fracture mechanics and cohesive zone model, Compos. Sci. Technol., Volume 253 (2024), 110640 | DOI

[31] A. Doitrand; G. Molnár; D. Leguillon; E. Martin; N. Carrère Dynamic crack initiation assessment with the coupled criterion, Eur. J. Mech. A Solids, Volume 93 (2022), 104483 | DOI

[32] X. Chen; A. Doitrand; N. Godin; C. Fusco Dynamic crack initiation in circular hole PMMA plates considering nonlinear elastic material behavior, Theor. Appl. Fract. Mech., Volume 124 (2023), 103783 | DOI

[33] A. Doitrand; S. Rubeck; S. Meille; J. Chevalier; P. Steyer; S. Gallois-Garreignot Influence of debonding and substrate plasticity on thin film multicracking, Theor. Appl. Fract. Mech., Volume 131 (2024), 104375 | DOI

[34] J. Li; D. Leguillon; E. Martin; X. Zhang Numerical implementation of the coupled criterion for damaged materials, Int. J. Solids Struct., Volume 165 (2019), pp. 93-103 | DOI

[35] A. Griffith The theory of rupture, First International Congress on Applied Mechanics, Farnborough, 1924, pp. 55-63

[36] G. Irwin Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., Volume 24 (1957) no. 3, pp. 361-364 | DOI

[37] G. Irwin Fracture, Springer, Berlin, Heidelberg, 1958, pp. 551-590 | DOI

[38] A. Doitrand; D. Leguillon; E. Martin Computation of generalized stress intensity factors of 3D singularities, Int. J. Solids Struct., Volume 190 (2020), pp. 271-280 | DOI

[39] D. Leguillon; D. Quesada; C. Putot; E. Martin Prediction of crack initiation at blunt notches and cavities—size effects, Eng. Fract. Mech., Volume 74 (2007) no. 15, pp. 2420-2436 | DOI

[40] P. E. Labossiere; M. L. Dunn Stress intensities at interface corners in anisotropic bimaterials, Eng. Fract. Mech., Volume 62 (1999) no. 6, pp. 555-576 | DOI

[41] T. Duminy; V. Ayyalasomayajula; A. Doitrand; S. Meille Influence of elastic and toughness anisotropy on crack initiation, Int. J. Solids Struct., Volume 302 (2024), 112950 | DOI

[42] M. Herrera-Garrido; V. Mantič; A. Barroso Computational semi-analytic code for stress singularity analysis, Procedia Struct. Integr., Volume 42 (2022), pp. 958-966 (23 European Conference on Fracture) | DOI

[43] M. Herrera-Garrido; V. Mantič; A. Barroso A powerful matrix formalism for stress singularities in anisotropic multi-material corners. Homogeneous (orthogonal) boundary and interface conditions, Theor. Appl. Fract. Mech., Volume 119 (2022), 103271 | DOI

[44] M. Herrera-Garrido; V. Mantič; A. Barroso A semi-analytical matrix formalism for stress singularities in anisotropic multi-material corners with frictional boundary and interface conditions, Theor. Appl. Fract. Mech., Volume 129 (2024), 104160 | DOI

[45] A. Doitrand; D. Leguillon; R. Estevez Experimental determination of generalized stress intensity factors from full-field measurements, Eng. Fract. Mech., Volume 230 (2020), 106980 | DOI

[46] Z. Yosibash; Y. Schapira Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method, Int. J. Fract., Volume 136 (2005), pp. 37-73 | DOI

[47] Z. Yosibash; Y. Schapira Edge stress intensity functions along elliptic and part-elliptic 3D cracks, Eng. Fract. Mech., Volume 245 (2021), 107477 | DOI

[48] M. Dunn; W. Suwito; S. Cunningham Fracture initiation at sharp notches: correlation using critical stress intensities, Int. J. Solids Struct., Volume 34 (1997) no. 29, pp. 3873-3883 | DOI

[49] P. Lazzarin; F. Berto; M. Zappalorto Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications, Int. J. Fatigue, Volume 32 (2010) no. 10, pp. 1559-1567 | DOI

[50] D. Leguillon Determination of the length of a short crack at a v-notch from a full field measurement, Int. J. Solids Struct., Volume 48 (2011) no. 6, pp. 884-892 | DOI

[51] Z. Yosibash; E. Priel; D. Leguillon A failure criterion for brittle elastic materials under mixed-mode loading, Int. J. Fract., Volume 141 (2006), pp. 291-312 | DOI

[52] D. Leguillon; Z. Yosibash Crack onset at a v-notch. Influence of the notch tip radius, Int. J. Fract., Volume 122 (2003), pp. 1-21 | DOI

[53] E. Priel; Z. Yosibash; D. Leguillon Failure initiation at a blunt V-notch tip under mixed mode loading, Int. J. Fract., Volume 149 (2008), pp. 143-173 | DOI

[54] P. Cornetti; D. Taylor; A. Carpinteri An asymptotic matching approach to shallow-notched structural elements, Eng. Fract. Mech., Volume 77 (2010) no. 2, pp. 348-358 | DOI

[55] D. Picard; D. Leguillon; C. Putot A method to estimate the influence of the notch-root radius on the fracture toughness measurement of ceramics, J. Eur. Ceram. Soc., Volume 26 (2006) no. 8, pp. 1421-1427 | DOI

[56] A. Doitrand; D. Leguillon Numerical modeling of the nucleation of facets ahead of a primary crack under mode I+III, Int. J. Fract., Volume 123 (2018) no. 1, pp. 37-50 | DOI

[57] D. Leguillon; R. Piat Fracture of porous materials—influence of the pore size, Eng. Fract. Mech., Volume 75 (2008) no. 7, pp. 1840-1853 (Critical Distance Theories of Fracture) | DOI

[58] A. Doitrand; D. Leguillon Asymptotic analysis of pore crack initiation near a free edge, Theor. Appl. Fract. Mech., Volume 116 (2021), 103125 | DOI

[59] I. García; D. Leguillon Mixed-mode crack initiation at a v-notch in presence of an adhesive joint, Int. J. Solids Struct., Volume 49 (2012) no. 15, pp. 2138-2149 | DOI

[60] A. Doitrand; E. Martin; D. Leguillon Numerical implementation of the coupled criterion: matched asymptotic and full finite element approaches, Finite Elem. Anal. Des., Volume 168 (2020), 103344 | DOI

[61] P. Cornetti; A. Sapora; A. Carpinteri Mode mixity and size effect in V-notched structures, Int. J. Solids Struct., Volume 50 (2013) no. 10, pp. 1562-1582 | DOI

[62] Z. Yosibash; B. Mittelman A 3-D failure initiation criterion from a sharp V-notch edge in elastic brittle structures, Eur. J. Mech. A Solids, Volume 60 (2016), pp. 70-94 | DOI

[63] D. Leguillon; S. Murer Crack deflection in a biaxial stress state, Int. J. Fract., Volume 150 (2008), pp. 75-90 | DOI

[64] A. Doitrand; D. Leguillon; G. Molnár; V. Lazarus Revisiting facet nucleation under mixed mode I+III loading with T-stress and mode-dependent fracture properties, Int. J. Fract., Volume 242 (2023), pp. 85-106 | DOI

[65] V. Tran; D. Leguillon; A. Krishnan Interface crack initiation at V-notches along adhesive bonding in weakly bonded polymers subjected to mixed-mode loading, Int. J. Fract., Volume 176 (2012), pp. 65-79 | DOI

[66] D. Leguillon; E. Martin The strengthening effect caused by an elastic contrast—part I: the bimaterial case, Int. J. Fract., Volume 179 (2013), pp. 157-167 | DOI

[67] D. Leguillon; E. Martin The strengthening effect caused by an elastic contrast—part II: stratification by a thin stiff layer, Int. J. Fract., Volume 179(1–2) (2013), pp. 169-178 | DOI

[68] D. Leguillon; S. Murer A criterion for crack kinking out of an interface, Key Eng. Mater., Volume 385-387 (2008), pp. 9-12 | DOI

[69] D. Leguillon; J. Laurencin; M. Dupeux Failure initiation in an epoxy joint between two steel plates, Eur. J. Mech. A Solids, Volume 22 (2003) no. 4, pp. 509-524 | DOI

[70] A. Moradi; D. Leguillon; N. Carrére Influence of the adhesive thickness on a debonding—an asymptotic model, Eng. Fract. Mech., Volume 114 (2013), pp. 55-68 | DOI

[71] J. Felger; P. Rosendahl; D. Leguillon; W. Becker Predicting crack patterns at bi-material junctions: a coupled stress and energy approach, Int. J. Solids Struct., Volume 164 (2019), pp. 191-201 | DOI

[72] J. Felger; N. Stein; C. Frey; W. Becker Scaling laws for the adhesive composite butt joint strength derived by finite fracture mechanics, Compos. Struct., Volume 208 (2019), pp. 546-556 | DOI

[73] C. Henninger; D. Leguillon Adhesive fracture of an epoxy joint under thermal and mechanical loadings, J. Therm. Stresses, Volume 31 (2007) no. 1, pp. 59-76 | DOI

[74] H. Brillet-Rouxel; E. Arfan; D. Leguillon; M. Dupeux; M. Braccini; S. Orain Crack initiation in Cu-interconnect structures, Microelectronic Engineering, Phys. Scr., Volume 83 (2007), pp. 2297-2302 | DOI

[75] J. Schlosser; E. Martin; C. Henninger et al. CFC/Cu bond damage in actively cooled plasma facing components, Phys. Scr. (2007), pp. 204-209 | DOI

[76] L. Nguyen; D. Leguillon; O. Gillia; E. Riviere Bond failure of a SiC/SiC brazed assembly, Mech. Mater., Volume 50 (2012), pp. 1-8 | DOI

[77] D. Leguillon; S. Tariolle; E. Martin; T. Chartier; J. Besson Prediction of crack deflection in porous/dense ceramic laminates, J. Eur. Ceram. Soc., Volume 26 (2006) no. 3, pp. 343-349 | DOI

[78] C. Lacroix; D. Leguillon; E. Martin The influence of an interphase on the deflection of a matrix crack in a ceramic-matrix composite, Compos. Sci. Technol., Volume 62 (2002) no. 4, pp. 519-523 | DOI

[79] C. Henninger; D. Leguillon; E. Martin Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model, C. R. Méc., Volume 335 (2007) no. 7, pp. 388-393 | DOI

[80] S. Murer; D. Leguillon Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model, Eur. J. Mech. A Solids, Volume 29 (2010) no. 2, pp. 109-118 | DOI

[81] J. Zghal; K. Moreau; N. Moës; D. Leguillon; C. Stolz Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion, Int. J. Fract., Volume 211 (2018), pp. 253-280 | DOI

[82] A. Abaza; J. Laurencin; A. Nakajo; S. Meille; J. Debayle; D. Leguillon Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach, Theor. Appl. Fract. Mech., Volume 119 (2022), 103349 | DOI

[83] A. Campagnolo; F. Berto; D. Leguillon Fracture assessment of sharp V-notched components under Mode II loading: a comparison among some recent criteria, Theor. Appl. Fract. Mech., Volume 85 (2016), pp. 217-226 | DOI

[84] D. Leguillon An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case, Theor. Appl. Fract. Mech., Volume 74 (2014), pp. 7-17 | DOI

[85] M. Williams On the stress distribution at the base of a stationary crack, ASME J. App. Mech., Volume 24 (1957), pp. 109-114 | DOI

[86] T. Apel; D. Leguillon; C. Pester; Z. Yosibash Edge singularities and structure of the 3-D Williams expansion, C. R. Méc., Volume 336 (2008) no. 8, pp. 629-635 | DOI

[87] D. Leguillon Computation of 3d-singularities in elasticity, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Lecture Notes in Pure and Applied Mathematics), Volume 167, Marcel Dekker, Paris, 1995, pp. 161-170

[88] D. Leguillon A damage model based on singular elastic fields, C. R. Méc., Volume 336 (2008) no. 3, pp. 283-288 | DOI

[89] D. Leguillon; Z. Yosibash Failure initiation at V-notch tips in quasi-brittle materials, Int. J. Solids Struct., Volume 122–123 (2017), pp. 1-13 | DOI

[90] A. Doitrand; G. Molnár Understanding regularized crack initiation through the lens of Finite Fracture Mechanics, preprint, 2024 | DOI

[91] R. Romani; M. Bornert; D. Leguillon; R. Le Roy; K. Sab Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation—theoretical predictions based on a coupled criterion, Eur. J. Mech. A Solids, Volume 51 (2015), pp. 172-182 | DOI

[92] D. Leguillon; E. Martin; O. Ševeček; R. Bermejo Application of the coupled stress-energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses, Eur. J. Mech. A Solids, Volume 54 (2015), pp. 94-104 | DOI

[93] S. Jiménez-Alfaro; D. Leguillon Modelling of glass matrix composites by the Coupled Criterion and the Matched Asymptotics approach. The role of a single platelet, Theor. Appl. Fract. Mech., Volume 122 (2022), 103650 | DOI

[94] S. Jiménez-Alfaro; D. Leguillon Modelling of glass matrix composites by the Coupled Criterion and the Matched Asymptotic Approach. The effect of residual stresses and volume fraction, Theor. Appl. Fract. Mech., Volume 128 (2023), 104112 | DOI

[95] D. Leguillon; E. Martin Prediction of multi-cracking in sub-micron films using the coupled criterion, Int. J. Fract., Volume 209 (2018), pp. 187-202 | DOI

[96] S. Jiménez-Alfaro; D. Leguillon Finite fracture Mechanics at the micro-scale. Application to bending tests of micro cantilever beams, Eng. Fract. Mech., Volume 258 (2021), 108012 | DOI

[97] L. Xu; D. Leguillon Dual-notch void model to explain the anisotropic strengths of 3D printed polymers, J. Eng. Mater. Technol. (2019), 014501 | DOI

[98] D. Quesada; D. Leguillon; C. Putot Multiple failures in or around a stiff inclusion embedded in a soft matrix under a compressive loading, Eur. J. Mech. A Solids, Volume 28 (2009) no. 4, pp. 668-679 | DOI

[99] J. Felger; N. Stein; W. Becker Asymptotic finite fracture mechanics solution for crack onset at elliptical holes in composite plates of finite-width, Eng. Fract. Mech., Volume 182 (2017), pp. 621-634 | DOI

[100] E. Tanné; T. Li; B. Bourdin; J.-J. Marigo; C. Maurini Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, Volume 110 (2018), pp. 80-99 | DOI

[101] J.-Y. Wu; V. P. Nguyen A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, Volume 119 (2018), pp. 20-42 | DOI

Cité par Sources :

Commentaires - Politique