[Revue de l’approche asymptotique du critère couplé]
Les développements asymptotiques raccordés constituent une technique mathématique puissante, largement applicable dans divers domaines de l’ingénierie. L’une de leurs principales utilisations se situe en mécanique de la rupture, où ils permettent d’obtenir des approximations précises à proximité de la pointe des fissures tout en maintenant une faible complexité de calcul. Cette méthode peut être intégrée de manière fluide au critère couplé (CC), qui permet de prédire l’amorçage et la propagation des fissures dans les matériaux fragiles. Cet article explique comment la technique des développements asymptotiques raccordés peut être utilisée conjointement avec le critère couplé dans le cadre de la mécanique de la rupture, tout en offrant une revue détaillée de la littérature sur les avancées réalisées au cours de la dernière décennie.
Matched Asymptotics is a powerful mathematical technique with broad applicability in various engineering fields. One of its key uses is in Fracture Mechanics, where it provides accurate approximations in the vicinity of the crack tip with low computational complexity. This method can be seamlessly integrated with the Coupled Criterion (CC), which enables the prediction of crack nucleation and propagation in brittle materials. Hence, this paper deeply explains how the MA technique can be applied together with the CC in the context of Fracture Mechanics, providing a detailed literature review of the advances made in the last decade.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Développement asymptotique raccordé, Critère couplé, Mécanique de la rupture
Sara Jiménez-Alfaro 1, 2 ; Israel García García 3 ; Aurélien Doitrand 4

@article{CRMECA_2025__353_G1_339_0, author = {Sara Jim\'enez-Alfaro and Israel Garc{\'\i}a Garc{\'\i}a and Aur\'elien Doitrand}, title = {Review of the matched asymptotic approach of the coupled criterion}, journal = {Comptes Rendus. M\'ecanique}, pages = {339--357}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.285}, language = {en}, }
TY - JOUR AU - Sara Jiménez-Alfaro AU - Israel García García AU - Aurélien Doitrand TI - Review of the matched asymptotic approach of the coupled criterion JO - Comptes Rendus. Mécanique PY - 2025 SP - 339 EP - 357 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.285 LA - en ID - CRMECA_2025__353_G1_339_0 ER -
%0 Journal Article %A Sara Jiménez-Alfaro %A Israel García García %A Aurélien Doitrand %T Review of the matched asymptotic approach of the coupled criterion %J Comptes Rendus. Mécanique %D 2025 %P 339-357 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.285 %G en %F CRMECA_2025__353_G1_339_0
Sara Jiménez-Alfaro; Israel García García; Aurélien Doitrand. Review of the matched asymptotic approach of the coupled criterion. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 339-357. doi : 10.5802/crmeca.285. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.285/
[1] Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964
[2] Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, USA, 1987 | DOI
[3] Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, 76, Springer, Berlin, 1988 | DOI
[4] Multiple scale and singular perturbation methods, 114, Springer Science & Business Media, New York, 2012 | DOI
[5] The Method of Matched Asymptotic Expansions and Its Generalizations, Historical Developments in Singular Perturbations, Springer, Cham, 2014 | DOI
[6] Homogenized constitutive law for a partialy cohesive composite material, Int. J. Solids Struct., Volume 18 (1982) no. 5, pp. 443-458 | DOI
[7] Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Application, 5, North-Holland, Amsterdam, 1978
[8] Comparison of matched asymptotics, multiple scalings and averages in homogenization of periodic structures, Math. Models Methods Appl. Sci., Volume 07 (1997) no. 05, pp. 663-680 | DOI
[9] Approximation of a two dimensional problem of junctions, Comput. Mech., Volume 6 (1990), pp. 435-455 | DOI
[10] Asymptotic and numerical analysis of a crack branching in non-isotropic materials, Eur. J. Mech. Solids, Volume 12 (1993), pp. 33-51
[11] From gradient damage laws to Griffith’s theory of crack propagation, J. Elast., Volume 113 (2013) no. 1, pp. 55-74 | DOI
[12] A mechanism for the control of crack propagation in all-brittle systems, Proc. R. Soc. A, Volume 282 (1964), pp. 508-520 | DOI
[13] Interface debonding ahead of a primary crack, J. Mech. Phys. Solids, Volume 48 (2000) no. 10, pp. 2137-2161 | DOI
[14] A method based on singularity theory to predict edge delamination of laminates, Int. J. Fract., Volume 100 (1999) no. 1, pp. 105-120 | DOI
[15] On 3D cracks intersecting a free surface in laminated composites, Int. J. Fract., Volume 99 (1999) no. 1, pp. 25-40 | DOI
[16] Interface crack tip singularity with contact and friction, C. R. Acad. Sci. IIB, Volume 327 (1999) no. 5, pp. 437-442 | DOI
[17] Mode III near and far fields for a crack lying in or along a joint, Intl J. Solids Struct., Volume 37 (2000) no. 19, pp. 2651-2672 | DOI
[18] The stress intensity factors near an angular point on the front of an interface crack, Eur. J. Mech. A Solids, Volume 18 (1999) no. 5, pp. 837-857 | DOI
[19] Stress singularities resulting from various boundary condition sinangular corners of plates inextension, J. Appl. Mech., Volume 19 (1952), pp. 526-528 | DOI
[20] A criterion for crack nucleation at a notch in homogeneous materials, C. R. Acad. Sci. IIB, Volume 329 (2001) no. 2, pp. 97-102 | DOI
[21] Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. A Solids, Volume 21 (2002) no. 1, pp. 61-72 | DOI
[22] A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016) no. 1–2, pp. 375-401 | DOI
[23] A review of the coupled criterion, preprint, 2024 | HAL
[24] Finite Fracture Mechanics crack initiation from a circular hole, Fatigue Fract. Eng. Mater. Struct., Volume 41 (2018) no. 7, pp. 1627-1636 | DOI
[25] Penny-shaped cracks by Finite Fracture Mechanics, Int. J. Fract., Volume 219 (2019), pp. 153-159 | DOI
[26] Failure analysis of crack-prone joints with Finite Fracture Mechanics using an advanced modeling approach for the adhesive layer, Int. J. Adhesion Adhesives, Volume 130 (2024), 103608 | DOI
[27] Evolution of crack density in cross-ply laminates—application of a coupled stress and energy criterion, Key Eng. Mater., Volume 713 (2016), pp. 262-265 | DOI
[28] Damage onset modeling in woven composites based on a coupled stress and energy criterion, Eng. Fract. Mech., Volume 169 (2017), pp. 189-200 | DOI
[29] A finite fracture model for the analysis of multi-cracking in woven ceramic matrix composites, Composites B, Volume 139 (2018), pp. 75-83 | DOI
[30] Explicit modelling of meso-scale damage in laminated composites—comparison between finite fracture mechanics and cohesive zone model, Compos. Sci. Technol., Volume 253 (2024), 110640 | DOI
[31] Dynamic crack initiation assessment with the coupled criterion, Eur. J. Mech. A Solids, Volume 93 (2022), 104483 | DOI
[32] Dynamic crack initiation in circular hole PMMA plates considering nonlinear elastic material behavior, Theor. Appl. Fract. Mech., Volume 124 (2023), 103783 | DOI
[33] Influence of debonding and substrate plasticity on thin film multicracking, Theor. Appl. Fract. Mech., Volume 131 (2024), 104375 | DOI
[34] Numerical implementation of the coupled criterion for damaged materials, Int. J. Solids Struct., Volume 165 (2019), pp. 93-103 | DOI
[35] The theory of rupture, First International Congress on Applied Mechanics, Farnborough, 1924, pp. 55-63
[36] Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., Volume 24 (1957) no. 3, pp. 361-364 | DOI
[37] Fracture, Springer, Berlin, Heidelberg, 1958, pp. 551-590 | DOI
[38] Computation of generalized stress intensity factors of 3D singularities, Int. J. Solids Struct., Volume 190 (2020), pp. 271-280 | DOI
[39] Prediction of crack initiation at blunt notches and cavities—size effects, Eng. Fract. Mech., Volume 74 (2007) no. 15, pp. 2420-2436 | DOI
[40] Stress intensities at interface corners in anisotropic bimaterials, Eng. Fract. Mech., Volume 62 (1999) no. 6, pp. 555-576 | DOI
[41] Influence of elastic and toughness anisotropy on crack initiation, Int. J. Solids Struct., Volume 302 (2024), 112950 | DOI
[42] Computational semi-analytic code for stress singularity analysis, Procedia Struct. Integr., Volume 42 (2022), pp. 958-966 (23 European Conference on Fracture) | DOI
[43] A powerful matrix formalism for stress singularities in anisotropic multi-material corners. Homogeneous (orthogonal) boundary and interface conditions, Theor. Appl. Fract. Mech., Volume 119 (2022), 103271 | DOI
[44] A semi-analytical matrix formalism for stress singularities in anisotropic multi-material corners with frictional boundary and interface conditions, Theor. Appl. Fract. Mech., Volume 129 (2024), 104160 | DOI
[45] Experimental determination of generalized stress intensity factors from full-field measurements, Eng. Fract. Mech., Volume 230 (2020), 106980 | DOI
[46] Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method, Int. J. Fract., Volume 136 (2005), pp. 37-73 | DOI
[47] Edge stress intensity functions along elliptic and part-elliptic 3D cracks, Eng. Fract. Mech., Volume 245 (2021), 107477 | DOI
[48] Fracture initiation at sharp notches: correlation using critical stress intensities, Int. J. Solids Struct., Volume 34 (1997) no. 29, pp. 3873-3883 | DOI
[49] Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications, Int. J. Fatigue, Volume 32 (2010) no. 10, pp. 1559-1567 | DOI
[50] Determination of the length of a short crack at a v-notch from a full field measurement, Int. J. Solids Struct., Volume 48 (2011) no. 6, pp. 884-892 | DOI
[51] A failure criterion for brittle elastic materials under mixed-mode loading, Int. J. Fract., Volume 141 (2006), pp. 291-312 | DOI
[52] Crack onset at a v-notch. Influence of the notch tip radius, Int. J. Fract., Volume 122 (2003), pp. 1-21 | DOI
[53] Failure initiation at a blunt V-notch tip under mixed mode loading, Int. J. Fract., Volume 149 (2008), pp. 143-173 | DOI
[54] An asymptotic matching approach to shallow-notched structural elements, Eng. Fract. Mech., Volume 77 (2010) no. 2, pp. 348-358 | DOI
[55] A method to estimate the influence of the notch-root radius on the fracture toughness measurement of ceramics, J. Eur. Ceram. Soc., Volume 26 (2006) no. 8, pp. 1421-1427 | DOI
[56] Numerical modeling of the nucleation of facets ahead of a primary crack under mode I+III, Int. J. Fract., Volume 123 (2018) no. 1, pp. 37-50 | DOI
[57] Fracture of porous materials—influence of the pore size, Eng. Fract. Mech., Volume 75 (2008) no. 7, pp. 1840-1853 (Critical Distance Theories of Fracture) | DOI
[58] Asymptotic analysis of pore crack initiation near a free edge, Theor. Appl. Fract. Mech., Volume 116 (2021), 103125 | DOI
[59] Mixed-mode crack initiation at a v-notch in presence of an adhesive joint, Int. J. Solids Struct., Volume 49 (2012) no. 15, pp. 2138-2149 | DOI
[60] Numerical implementation of the coupled criterion: matched asymptotic and full finite element approaches, Finite Elem. Anal. Des., Volume 168 (2020), 103344 | DOI
[61] Mode mixity and size effect in V-notched structures, Int. J. Solids Struct., Volume 50 (2013) no. 10, pp. 1562-1582 | DOI
[62] A 3-D failure initiation criterion from a sharp V-notch edge in elastic brittle structures, Eur. J. Mech. A Solids, Volume 60 (2016), pp. 70-94 | DOI
[63] Crack deflection in a biaxial stress state, Int. J. Fract., Volume 150 (2008), pp. 75-90 | DOI
[64] Revisiting facet nucleation under mixed mode I+III loading with T-stress and mode-dependent fracture properties, Int. J. Fract., Volume 242 (2023), pp. 85-106 | DOI
[65] Interface crack initiation at V-notches along adhesive bonding in weakly bonded polymers subjected to mixed-mode loading, Int. J. Fract., Volume 176 (2012), pp. 65-79 | DOI
[66] The strengthening effect caused by an elastic contrast—part I: the bimaterial case, Int. J. Fract., Volume 179 (2013), pp. 157-167 | DOI
[67] The strengthening effect caused by an elastic contrast—part II: stratification by a thin stiff layer, Int. J. Fract., Volume 179(1–2) (2013), pp. 169-178 | DOI
[68] A criterion for crack kinking out of an interface, Key Eng. Mater., Volume 385-387 (2008), pp. 9-12 | DOI
[69] Failure initiation in an epoxy joint between two steel plates, Eur. J. Mech. A Solids, Volume 22 (2003) no. 4, pp. 509-524 | DOI
[70] Influence of the adhesive thickness on a debonding—an asymptotic model, Eng. Fract. Mech., Volume 114 (2013), pp. 55-68 | DOI
[71] Predicting crack patterns at bi-material junctions: a coupled stress and energy approach, Int. J. Solids Struct., Volume 164 (2019), pp. 191-201 | DOI
[72] Scaling laws for the adhesive composite butt joint strength derived by finite fracture mechanics, Compos. Struct., Volume 208 (2019), pp. 546-556 | DOI
[73] Adhesive fracture of an epoxy joint under thermal and mechanical loadings, J. Therm. Stresses, Volume 31 (2007) no. 1, pp. 59-76 | DOI
[74] Crack initiation in Cu-interconnect structures, Microelectronic Engineering, Phys. Scr., Volume 83 (2007), pp. 2297-2302 | DOI
[75] et al. CFC/Cu bond damage in actively cooled plasma facing components, Phys. Scr. (2007), pp. 204-209 | DOI
[76] Bond failure of a SiC/SiC brazed assembly, Mech. Mater., Volume 50 (2012), pp. 1-8 | DOI
[77] Prediction of crack deflection in porous/dense ceramic laminates, J. Eur. Ceram. Soc., Volume 26 (2006) no. 3, pp. 343-349 | DOI
[78] The influence of an interphase on the deflection of a matrix crack in a ceramic-matrix composite, Compos. Sci. Technol., Volume 62 (2002) no. 4, pp. 519-523 | DOI
[79] Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model, C. R. Méc., Volume 335 (2007) no. 7, pp. 388-393 | DOI
[80] Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model, Eur. J. Mech. A Solids, Volume 29 (2010) no. 2, pp. 109-118 | DOI
[81] Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion, Int. J. Fract., Volume 211 (2018), pp. 253-280 | DOI
[82] Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach, Theor. Appl. Fract. Mech., Volume 119 (2022), 103349 | DOI
[83] Fracture assessment of sharp V-notched components under Mode II loading: a comparison among some recent criteria, Theor. Appl. Fract. Mech., Volume 85 (2016), pp. 217-226 | DOI
[84] An attempt to extend the 2D coupled criterion for crack nucleation in brittle materials to the 3D case, Theor. Appl. Fract. Mech., Volume 74 (2014), pp. 7-17 | DOI
[85] On the stress distribution at the base of a stationary crack, ASME J. App. Mech., Volume 24 (1957), pp. 109-114 | DOI
[86] Edge singularities and structure of the 3-D Williams expansion, C. R. Méc., Volume 336 (2008) no. 8, pp. 629-635 | DOI
[87] Computation of 3d-singularities in elasticity, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Lecture Notes in Pure and Applied Mathematics), Volume 167, Marcel Dekker, Paris, 1995, pp. 161-170
[88] A damage model based on singular elastic fields, C. R. Méc., Volume 336 (2008) no. 3, pp. 283-288 | DOI
[89] Failure initiation at V-notch tips in quasi-brittle materials, Int. J. Solids Struct., Volume 122–123 (2017), pp. 1-13 | DOI
[90] Understanding regularized crack initiation through the lens of Finite Fracture Mechanics, preprint, 2024 | DOI
[91] Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation—theoretical predictions based on a coupled criterion, Eur. J. Mech. A Solids, Volume 51 (2015), pp. 172-182 | DOI
[92] Application of the coupled stress-energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses, Eur. J. Mech. A Solids, Volume 54 (2015), pp. 94-104 | DOI
[93] Modelling of glass matrix composites by the Coupled Criterion and the Matched Asymptotics approach. The role of a single platelet, Theor. Appl. Fract. Mech., Volume 122 (2022), 103650 | DOI
[94] Modelling of glass matrix composites by the Coupled Criterion and the Matched Asymptotic Approach. The effect of residual stresses and volume fraction, Theor. Appl. Fract. Mech., Volume 128 (2023), 104112 | DOI
[95] Prediction of multi-cracking in sub-micron films using the coupled criterion, Int. J. Fract., Volume 209 (2018), pp. 187-202 | DOI
[96] Finite fracture Mechanics at the micro-scale. Application to bending tests of micro cantilever beams, Eng. Fract. Mech., Volume 258 (2021), 108012 | DOI
[97] Dual-notch void model to explain the anisotropic strengths of 3D printed polymers, J. Eng. Mater. Technol. (2019), 014501 | DOI
[98] Multiple failures in or around a stiff inclusion embedded in a soft matrix under a compressive loading, Eur. J. Mech. A Solids, Volume 28 (2009) no. 4, pp. 668-679 | DOI
[99] Asymptotic finite fracture mechanics solution for crack onset at elliptical holes in composite plates of finite-width, Eng. Fract. Mech., Volume 182 (2017), pp. 621-634 | DOI
[100] Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, Volume 110 (2018), pp. 80-99 | DOI
[101] A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, Volume 119 (2018), pp. 20-42 | DOI
Cité par Sources :
Commentaires - Politique