Comptes Rendus
Article de synthèse
The stability of Minkowski space and its influence on the mathematical analysis of General Relativity
[La stabilité de l’espace de Minkowski et son influence sur l’analyse mathématique de la Relativité Générale]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 519-542.

L’étude de la stabilité de l’espace de Minkowski a eu une influence majeure sur l’analyse mathématique de la Relativité Générale et, plus largement, sur les équations aux dérivées partielles hyperboliques géométriques. Cet article propose un aperçu du contexte, des idées et d’une partie de l’héritage entourant ce sujet, en mettant particulièrement l’accent sur la démonstration originale de Christodoulou–Klainerman.

The study of the stability of Minkowksi space has had a tremendous influence on the mathematical analysis of General Relativity and in a wider context, on geometric hyperbolic partial differential equations. This article proposes an overview of the context, ideas and part of the legacy surrounding this subject, focusing particularly on the original proof of Christodoulou–Klainerman.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.287
Keywords: Einstein equations, General Relativity, Asymptotic stability
Mots-clés : Équations d’Einstein, Relativité Générale, Stabilité asymptotique

Jacques Smulevici 1

1 Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, CNRS and Institut Universitaire de France, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_519_0,
     author = {Jacques Smulevici},
     title = {The stability of {Minkowski} space and its influence on the mathematical analysis of {General} {Relativity}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {519--542},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.287},
     language = {en},
}
TY  - JOUR
AU  - Jacques Smulevici
TI  - The stability of Minkowski space and its influence on the mathematical analysis of General Relativity
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 519
EP  - 542
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.287
LA  - en
ID  - CRMECA_2025__353_G1_519_0
ER  - 
%0 Journal Article
%A Jacques Smulevici
%T The stability of Minkowski space and its influence on the mathematical analysis of General Relativity
%J Comptes Rendus. Mécanique
%D 2025
%P 519-542
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.287
%G en
%F CRMECA_2025__353_G1_519_0
Jacques Smulevici. The stability of Minkowski space and its influence on the mathematical analysis of General Relativity. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 519-542. doi : 10.5802/crmeca.287. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.287/

[1] H. Minkowski Raum und Zeit, Jahresberichte der Deutschen Mathematiker-Vereinigung, Volume 18 (1909), pp. 75-88 (Lecture given at the 80th Assembly of German Natural Scientists and Physicians, Cologne, 21 September 1908) | Zbl

[2] B. O’Neill Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983

[3] Y. Choquet-Bruhat Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952) no. 1, pp. 141-225 | Zbl

[4] Y. Choquet-Bruhat Stabilité de solutions d’équations hyperboliques non linéaires. Application à l’espace-temps de Minkovski en relativité générale, C. R. Acad. Sci. Paris Sér. A–B, Volume 274 (1972), pp. 843-845 | Zbl

[5] Y. Choquet-Bruhat Stabilité initiale de l’espace temps de Minkowski, C. R. Hebd. Séances Acad. Sci. A et B, Volume 275 (1972), pp. 1019-1021

[6] Y. Choquet-Bruhat; S. Deser On the stability of flat space, Ann. Phys., Volume 81 (1973), pp. 165-178 | DOI | Zbl

[7] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993, x+514 pages

[8] H. Friedrich On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 587-609 | DOI | Zbl

[9] J. Corvino Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 137-189 | DOI | Zbl

[10] P. T. Chruściel; E. Delay Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quant. Gravity, Volume 19 (2002) no. 9, p. L71-L79 | DOI

[11] J. Corvino; R. M. Schoen On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 185-217 | DOI | Zbl

[12] L. Kehrberger The case against smooth null infinity IV: linearized gravity around Schwarzschild—an overview, Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., Volume 382 (2024) no. 2267, 20230039 | DOI | Zbl

[13] H. Bondi Gravitational waves in general relativity, Nature, Volume 186 (1960) no. 4724, p. 535 | DOI | Zbl

[14] D. Christodoulou Nonlinear nature of gravitation and gravitational-wave experiments, Phys. Rev. Lett., Volume 67 (1991), pp. 1486-1489 | DOI | Zbl

[15] J.-P. Bourguignon Stabilité par déformation non-linéaire de la métrique de Minkowski (d’après D. Christodoulou et S. Klainerman), Sémin. Bourbaki, Volume 1990/91 (1991) no. 201–203, pp. 321-358 (Exp. No. 740) | Numdam

[16] C. Zuily Solutions en grand temps d’équations d’ondes non linéaires, Sémin. Bourbaki, Volume 36 (1993-1994), pp. 107-144 http://eudml.org/doc/110181 (Accessed 2025-03-25)

[17] Y. Choquet-Bruhat Un théorème d’instabilité pour certaines équations hyperboliques non linéaires, C. R. Acad. Sci. Paris Sér. A–B, Volume 276 (1973), p. A281-A284 | Zbl

[18] D. Christodoulou; S. Klainerman Asymptotic properties of linear field equations in minkowski space, Commun. Pure Appl. Math., Volume 43 (1990) no. 2, pp. 137-199 | DOI | Zbl

[19] S. Klainerman Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., Volume 38 (1985) no. 3, pp. 321-332 | DOI | Zbl

[20] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 267-282 | DOI | Zbl

[21] S. Klainerman The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M, 1984) (Lectures in Applied Mathematics), Volume 23, American Mathematical Society, Providence, RI, 1986, pp. 293-326 | Zbl

[22] H. Lindblad; I. Rodnianski The weak null condition for Einstein’s equations, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 11, pp. 901-906 | DOI | Numdam | Zbl

[23] H. Lindblad; I. Rodnianski Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., Volume 256 (2005) no. 1, pp. 43-110 | DOI | Zbl

[24] H. Lindblad; I. Rodnianski The global stability of Minkowski space–time in harmonic gauge, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1401-1477 | DOI | Zbl

[25] C. D. Sogge Lectures on Nonlinear Wave Equations, Monographs in Analysis, II, International Press, Boston, MA, 1995, vi+159 pages

[26] J. Sbierski On the existence of a maximal Cauchy development for the Einstein equations: a dezornification, Ann. Henri Poincaré, Volume 17 (2016) no. 2, pp. 301-329 | DOI | Zbl

[27] Y. Choquet-Bruhat; R. Geroch Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969) no. 4, pp. 329-335 | DOI | Zbl

[28] R. Schoen; S. T. Yau On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979) no. 1, pp. 45-76 | DOI | Zbl

[29] E. Witten A new proof of the positive energy theorem, Commun. Math. Phys., Volume 80 (1981) no. 3, pp. 381-402 | DOI | Zbl

[30] A. J. Fang; J. Szeftel; A. Touati Initial data for Minkowski stability with arbitrary decay (2024) | arXiv

[31] P. G. LeFloch; T.-C. Nguyen The seed-to-solution method for the Einstein constraints and the asymptotic localization problem, J. Funct. Anal., Volume 285 (2023) no. 9, 110106 | DOI | Zbl

[32] D. Christodoulou Mathematical Problems of General Relativity. I, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI

[33] C. S. Morawetz The limiting amplitude principle, Commun. Pure Appl. Math., Volume 15 (1962) no. 3, pp. 349-361 | DOI | Zbl

[34] D. Christodoulou The Action Principle and Partial Differential Equations, Annals of Mathematics Studies, 146, Princeton University Press, Princeton, NJ, 2000, viii+319 pages | DOI

[35] F. John Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., Volume 34 (1981) no. 1, pp. 29-51 | DOI | Zbl

[36] F. John Blow-up of radial solutions of utt=c2(ut)Δu in three space dimensions, Math. Appl. Comput., Volume 4 (1985) no. 1, pp. 3-18 | Zbl

[37] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 267-282 | DOI | Zbl

[38] C. D. Sogge Lectures on Non-Linear Wave Equations, International Press, Boston, MA, 2008, x+205 pages

[39] S. Alinhac The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., Volume 145 (2001) no. 3, pp. 597-618 | DOI | Zbl

[40] Y. Choquet-Bruhat The null condition and asymptotic expansions for the Einstein equations, Ann. Phys., Volume 512 (2000) no. 3–5, pp. 258-266 | DOI | Zbl

[41] H. Lindblad; I. Rodnianski Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., Volume 256 (2005) no. 1, pp. 43-110 | DOI | Zbl

[42] H. Lindblad; I. Rodnianski The global stability of Minkowski space–time in harmonic gauge, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1401-1477 | DOI | Zbl

[43] R. Bartnik Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys., Volume 94 (1984) no. 2, pp. 155-175 | DOI | Zbl

[44] L. Bieri; N. Zipser Extensions of the Stability Theorem of the Minkowski Space in General Relativity, AMS/IP Studies in Advanced Mathematics, 45, American Mathematical Society, Providence, RI; International Press: Cambridge, MA, 2009, xxiv+491 pages | DOI

[45] D. Shen Global stability of Minkowski spacetime with minimal decay (2023) | arXiv

[46] M. Dafermos; I. Rodnianski A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, XVIth International Congress on Mathematical Physics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010), pp. 421-432 | DOI | Zbl

[47] S. Klainerman; F. Nicolò The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+385 pages | DOI

[48] D. Shen Stability of Minkowski spacetime in exterior regions, Pure Appl. Math. Q., Volume 20 (2024) no. 2, pp. 757-868 | DOI | Zbl

[49] P. Hintz Exterior stability of Minkowski space in generalized harmonic gauge, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 5, 99 | DOI

[50] J. Luk On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not., Volume 2012 (2011) no. 20, pp. 4625-4678 | DOI | Zbl

[51] D. Christodoulou The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009, x+589 pages | DOI

[52] O. Graf Global nonlinear stability of Minkowski space for spacelike-characteristic initial data (2021) | arXiv

[53] C. Huneau Stability in exponential time of Minkowski space–time with a translation space-like Killing field, Ann. PDE, Volume 2 (2016) no. 1, 7 | DOI

[54] C. Huneau Stability of Minkowski space–time with a translation space-like Killing field, Ann. PDE, Volume 4 (2018) no. 1, 12 | DOI | Zbl

[55] J. Loizelet Solutions globales des équations d’Einstein-Maxwell avec jauge harmonique et jauge de Lorentz, C. R. Math. Acad. Sci. Paris, Volume 342 (2006) no. 7, pp. 479-482 | DOI

[56] J. Speck The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates, Anal. PDE, Volume 7 (2014) no. 4, pp. 771-901 | DOI

[57] C. Kauffman; H. Lindblad Global stability of Minkowski space for the Einstein–Maxwell–Klein–Gordon system in generalized wave coordinates, Ann. Henri Poincaré, Volume 24 (2023) no. 11, pp. 3837-3919 | DOI | Zbl

[58] H. Lindblad On the asymptotic behavior of solutions to the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 135-184 | DOI | Zbl

[59] S. Klainerman Remark on the asymptotic behavior of the Klein–Gordon equation in Rn+1, Commun. Pure Appl. Math., Volume 46 (1993) no. 2, pp. 137-144 | DOI | Zbl

[60] P. G. LeFloch; Y. Ma The global nonlinear stability of Minkowski space for self-gravitating massive fields, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 603-665 | DOI | Zbl

[61] P. G. LeFloch; Y. Ma Nonlinear stability of self-gravitating massive fields, Ann. PDE, Volume 10 (2024) no. 2, 16 | DOI | Zbl

[62] A. D. Ionescu; B. Pausader The Einstein–Klein–Gordon Coupled System: Global Stability of the Minkowski Solution, Annals of Mathematics Studies, 213, Princeton University Press, Princeton, NJ, 2022, ix+296 pages

[63] Q. Wang An intrinsic hyperboloid approach for Einstein Klein–Gordon equations, J. Differ. Geom., Volume 115 (2020) no. 1, pp. 27-109 | DOI | Zbl

[64] P. G. LeFloch; Y. Ma The Euclidean-hyperboloidal foliation method: application to f(R) modified gravity, Gen. Relat. Gravit., Volume 56 (2024) no. 5, 66 | DOI | Zbl

[65] C. Huneau; A. Stingo; Z. Wyatt The global stability of the Kaluza–Klein spacetime (2023) | arXiv

[66] G. Rein; A. D. Rendall Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data, Commun. Math. Phys., Volume 150 (1992) no. 3, pp. 561-583 | DOI | Zbl

[67] M. Dafermos A note on the collapse of small data self-gravitating massless collisionless matter, J. Hyperbolic Differ. Equ., Volume 3 (2006) no. 4, pp. 589-598 | DOI | Zbl

[68] L. Bigorgne; D. Fajman; J. Joudioux; J. Smulevici; M. Thaller Asymptotic stability of Minkowski space–time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 1, pp. 1-147 | DOI | Zbl

[69] D. Fajman; J. Joudioux; J. Smulevici The stability of the Minkowski space for the Einstein–Vlasov system, Anal. PDE, Volume 14 (2021) no. 2, pp. 425-531 | DOI | Zbl

[70] H. Lindblad; M. Taylor Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., Volume 235 (2020) no. 1, pp. 517-633 | DOI | Zbl

[71] X. Wang Global stability of the Minkowski spacetime for the Einstein–Vlasov system (2022) | arXiv

[72] D. Fajman; J. Joudioux; J. Smulevici A vector field method for relativistic transport equations with applications, Anal. PDE, Volume 10 (2017) no. 7, pp. 1539-1612 | DOI | Zbl

[73] P. T. Chruściel; J. L. Costa; M. Heusler Stationary black holes: uniqueness and beyond, Living Rev. Relat., Volume 15 (2012) no. 1, 7 | DOI

[74] M. Dafermos; G. Holzegel; I. Rodnianski; M. Taylor Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes (2022) | arXiv

[75] M. Dafermos; I. Rodnianski Lectures on black holes and linear waves, Evolution Equations (Clay Mathematics Proceedings), Volume 17, American Mathematical Society, Providence, RI, 2013, pp. 97-205 | Zbl

[76] G. Mavrogiannis Quasilinear wave equations on Schwarzschild–de Sitter, Commun. Partial Differ. Equ., Volume 49 (2024) no. 1–2, pp. 38-87 | DOI | Zbl

[77] J. Sbierski Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes, Anal. PDE, Volume 8 (2015) no. 6, pp. 1379-1420 | DOI | Zbl

[78] P. Hintz Normally hyperbolic trapping on asymptotically stationary spacetimes, Probab. Math. Phys., Volume 2 (2021) no. 1, pp. 71-126 | DOI | Zbl

[79] P. Millet Optimal decay for solutions of the Teukolsky equation on the Kerr metric for the full subextremal range |a| < M (2023) | arXiv

[80] L. Andersson; P. Blue Hidden symmetries and decay for the wave equation on the Kerr spacetime, Ann. of Math. (2), Volume 182 (2015) no. 3, pp. 787-853 | DOI | Zbl

[81] E. Giorgi; S. Klainerman; J. Szeftel Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, Pure Appl. Math. Q., Volume 20 (2024) no. 7, pp. 2865-3849 | DOI

[82] S. Klainerman; J. Szeftel Kerr stability for small angular momentum, Pure Appl. Math. Q., Volume 19 (2023) no. 3, pp. 791-1678 | DOI | Zbl

[83] P. Hintz; A. Vasy Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE, Volume 6 (2020) no. 1, 2 | DOI | Zbl

[84] P. Hintz; A. Vasy The global non-linear stability of the Kerr–de Sitter family of black holes, Acta Math., Volume 220 (2018) no. 1, pp. 1-206 | DOI | Zbl

[85] D. Christodoulou The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007, viii+992 pages | DOI

[86] S. Klainerman; M. Machedon Space-time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | DOI | Zbl

[87] S. Klainerman; I. Rodnianski; J. Szeftel The bounded L2 curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI | Zbl

[88] J. Luk; S.-J. Oh Global nonlinear stability of large dispersive solutions to the Einstein equations, Ann. Henri Poincaré, Volume 23 (2022) no. 7, pp. 2391-2521 | DOI | Zbl

[89] H. Lindblad On the asymptotic behavior of solutions to the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 135-184 | DOI | Zbl

[90] A. Touati Geometric optics approximation for the Einstein vacuum equations, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 3109-3200 | DOI

Cité par Sources :

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: