Comptes Rendus
Article de synthèse
Burnett’s conjecture in general relativity
[La conjecture de Burnett en relativité générale]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 455-476.

Nous passons en revue la littérature sur la conjecture de Burnett en relativité générale, qui relie les limites faibles des solutions du vide à la théorie cinétique relativiste. Une attention particulière est portée sur le lien entre ces travaux et les premiers résultats de Choquet-Bruhat concernant les ondes gravitationnelles haute fréquence et l’optique géométrique.

We present the literature on Burnett’s conjecture in general relativity, which relate weak limits of vacuum solutions to relativistic kinetic theory. A special care is put on relating these works with early Choquet-Bruhat’s results on high-frequency gravitational waves and geometric optics.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.288
Keywords: Einstein equations, Backreaction, Relativistic kinetic theory, Compensated compactness, Geometric optics, High-frequency gravitational waves
Mots-clés : Équations d’Einstein, Rétroaction, Théorie cinétique relativiste, Compacité compensée, Optique géométrique, Ondes gravitationnelles haute fréquence

Arthur Touati 1

1 CNRS & IMB, Bordeaux University, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_455_0,
     author = {Arthur Touati},
     title = {Burnett{\textquoteright}s conjecture in general relativity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {455--476},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.288},
     language = {en},
}
TY  - JOUR
AU  - Arthur Touati
TI  - Burnett’s conjecture in general relativity
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 455
EP  - 476
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.288
LA  - en
ID  - CRMECA_2025__353_G1_455_0
ER  - 
%0 Journal Article
%A Arthur Touati
%T Burnett’s conjecture in general relativity
%J Comptes Rendus. Mécanique
%D 2025
%P 455-476
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.288
%G en
%F CRMECA_2025__353_G1_455_0
Arthur Touati. Burnett’s conjecture in general relativity. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 455-476. doi : 10.5802/crmeca.288. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.288/

[1] Y. Choquet-Bruhat Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI

[2] Y. Choquet-Bruhat General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009

[3] G. A. Burnett The high-frequency limit in general relativity, J. Math. Phys., Volume 30 (1989) no. 1, pp. 90-96 | DOI | Zbl

[4] Y. Choquet-Bruhat Construction de solutions radiatives approchées des équations d’Einstein, Commun. Math. Phys., Volume 12 (1969), pp. 16-35 http://projecteuclid.org/euclid.cmp/1103841306 | DOI

[5] D. R. Brill; J. B. Hartle Method of the self-consistent field in general relativity and its application to the gravitational geon, Phys. Rev., Volume 135 (1964), p. B271-B278 | DOI | Zbl

[6] R. A. Isaacson Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics, Phys. Rev., Volume 166 (1968), pp. 1263-1271 | DOI

[7] R. A. Isaacson Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev., Volume 166 (1968), pp. 1272-1279 | DOI

[8] M. A. H. MacCallum; A. H. Taub The averaged Lagrangian and high-frequency gravitational waves, Commun. Math. Phys., Volume 30 (1973) no. 2, pp. 153-169 | DOI

[9] S. R. Green; R. M. Wald New framework for analyzing the effects of small scale inhomogeneities in cosmology, Phys. Rev. D, Volume 83 (2011) no. 8, 084020 | DOI

[10] Y. Choquet-Bruhat Une Mathématicienne dans Cet étrange Univers : Mémoires, Odile Jacob, Paris, 2016

[11] C. Huneau; J. Luk High-frequency solutions to the Einstein equations, Class. Quantum Gravity, Volume 41 (2024) no. 14, 143002 | DOI | Zbl

[12] A. Einstein Näherungsweise integration der feldgleichungen der gravitation, Sitzungsber. Kgl. Preuss. Akad. Wiss., Volume 1916 (1916), pp. 688-696 | Zbl

[13] C. W. Misner; K. S. Thorne; J. A. Wheeler Gravitation, W. H. Freeman and Co., San Francisco, CA, 1973

[14] Y. Choquet-Bruhat Ondes asymptotiques pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci. Paris Sér. A, Volume 264 (1967), pp. 625-628 | Zbl

[15] Y. Choquet-Bruhat Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures Appl. (9), Volume 48 (1969), pp. 117-158 | Zbl

[16] Y. Choquet-Bruhat Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci., Volume 264 (1967), pp. 625-638

[17] Y. Choquet-Bruhat Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, Sémin. Jean Leray, Volume 3 (1969), pp. 1-10 (MR:255964. Zbl:0177.36404) | Zbl

[18] A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990 | DOI

[19] Y. Choquet-Bruhat Approximate radiative solutions of Einstein–Maxwell equations, Relativity and Gravitation (G. Kuper Charles, ed.), Gordon and Breach Science Publishers, Inc, New York, 1971, pp. 81-86 https://www.osti.gov/biblio/4661970

[20] Y. Choquet-Bruhat; A. Greco Ondes gravitationnelles à haute fréquence et interaction avec la matière, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 2, pp. 117-124 | Zbl

[21] Y. Choquet-Bruhat; A. H. Taub High-frequency, self-gravitating, charged scalar fields, Gen. Relativ. Gravit., Volume 8 (1977) no. 8, pp. 561-571 | DOI

[22] Y. Choquet-Bruhat; A. Greco High frequency asymptotic solutions of Yang–Mills and associated fields, J. Math. Phys., Volume 24 (1983) no. 2, pp. 377-379 | DOI | Zbl

[23] Y. Choquet-Bruhat Ondes à haute fréquence pour la gravitation avec termes de Gauss–Bonnet, C. R. Acad. Sci. Paris Sér. I Math., Volume 307 (1988) no. 12, pp. 693-696 | Zbl

[24] Y. Choquet-Bruhat High frequency waves for stringy gravity, Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A, B (Teaneck, NJ) (D. G. Blair; M. J. Buckingham; R. Ruffini, eds.), World Scientific Publishing, Singapore, 1989, pp. 349-361 (Perth, 1988). MR:1056882

[25] H. Andréasson The Einstein–Vlasov system/kinetic theory, Living Rev. Relativ., Volume 14 (2011), 4 | DOI | Zbl

[26] Y. Choquet-Bruhat Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. (Cauchy problem for the Einstein-Liouville integro-differential system), Ann. Inst. Fourier, Volume 21 (1971) no. 3, pp. 181-201 https://eudml.org/doc/74046 | DOI | Zbl

[27] A. D. Rendall The Newtonian limit for asymptotically flat solutions of the Vlasov–Einstein system, Commun. Math. Phys., Volume 163 (1994) no. 1, pp. 89-112 | DOI | Zbl

[28] B. Le Floch; P. G. Lefloch Compensated compactness and corrector stress tensor for the Einstein equations in 𝕋 2 symmetry, Port. Math. (N.S.), Volume 77 (2020) no. 3–4, pp. 409-421 | DOI | Zbl

[29] L. Tartar The General Theory of Homogenization, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009 | DOI

[30] D. Christodoulou Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 267-282 | DOI | Zbl

[31] S. Klainerman The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, NM, 1984) (Lectures in Applied Mathematics), Volume 23, American Mathematical Society, Providence, RI, 1986, pp. 293-326 | Zbl

[32] F. Murat Compacite par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., Volume 5 (1978), pp. 489-507 https://eudml.org/doc/83787 | Zbl

[33] L. Tartar Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. 4, Edinburgh 1979 (Research Notes in Mathematics), Volume 39, Pitman Publishing Ltd., London, 1979, pp. 136-212 | Zbl

[34] C. De Lellis; L. J. Székelyhidi Dissipative continuous Euler flows, Invent. Math., Volume 193 (2013) no. 2, pp. 377-407 | DOI | Zbl

[35] C. De Lellis; L. J. Székelyhidi Weak stability and closure in turbulence, Phil. Trans. R. Soc. A (2022) no. 380, 20210091 | DOI

[36] P. Isett A proof of Onsager’s conjecture, Ann. Math. (2), Volume 188 (2018) no. 3, pp. 871-963 | DOI | Zbl

[37] J. Shatah Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | DOI | Zbl

[38] J.-L. Joly; G. Metivier; J. Rauch Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Differ. Equ., Volume 166 (2000) no. 1, pp. 175-250 | DOI | Zbl

[39] D. Lannes Space time resonances [after Germain, Masmoudi, Shatah], Séminaire Bourbaki Volume 2011/2012 exposés 1043-1058 (Astérisque, no. 352), Société mathématique de France, 2013 | Zbl

[40] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993

[41] H. Lindblad; I. Rodnianski The global stability of Minkowski space–time in harmonic gauge, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1401-1477 | DOI | Zbl

[42] Y. Choquet-Bruhat The null condition and asymptotic expansions for the Einstein equations, Ann. Phys. (8), Volume 9 (2000) no. 3–5, pp. 258-266 | DOI | Zbl

[43] H. Lindblad; I. Rodnianski The weak null condition for Einstein’s equations, C. R., Math., Acad. Sci. Paris, Volume 336 (2003) no. 11, pp. 901-906 | DOI | Zbl

[44] S. Klainerman; I. Rodnianski; J. Szeftel The bounded L 2 curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI | Zbl

[45] T. Buchert Dark energy from structure: a status report, Gen. Relativ. Gravit., Volume 40 (2008) no. 2, pp. 467-527 | DOI | Zbl

[46] E. W. Kolb; S. Matarrese; A. Riotto On cosmic acceleration without dark energy, New J. Phys., Volume 8 (2006) no. 12, 322 | DOI

[47] S. R. Green; R. M. Wald Examples of backreaction of small-scale inhomogeneities in cosmology, Phys. Rev. D, Volume 87 (2013), 124037 | DOI | Zbl

[48] T. Buchert; M. Carfora; G. F. R. Ellis; E. W. Kolb; M. A. H. MacCallum; J. J. Ostrowski; S. Räsänen; B. F. Roukema; L. Andersson; A. A. Coley; D. L. Wiltshire Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?, Class. Quantum Gravity, Volume 32 (2015) no. 21, 215021 | DOI | Zbl

[49] S. R. Green; R. M. Wald Comments on backreaction, preprint, 2015 | arXiv

[50] A. Guerra; R. T. da Costa Oscillations in wave map systems and homogenization of the Einstein equations in symmetry, preprint, 2021 | arXiv

[51] C. Huneau; J. Luk High-frequency backreaction for the Einstein equations under polarized 𝕌(1)-symmetry, Duke Math. J., Volume 167 (2018) no. 18, pp. 3315-3402 | DOI | Zbl

[52] C. Huneau; J. Luk Trilinear compensated compactness and Burnett’s conjecture in general relativity, Ann. Sci. Éc. Norm. Supér. (4), Volume 57 (2024) no. 2, pp. 385-472 | DOI | Zbl

[53] C. Huneau; J. Luk Burnett’s conjecture in generalized wave coordinates, preprint, 2024 | arXiv

[54] C. Huneau; J. Luk High-frequency backreaction for the Einstein equations under 𝕌(1) symmetry: from Einstein-dust to Einstein–Vlasov, 2024 (In preparation)

[55] J. Luk; I. Rodnianski High-frequency limits and null dust shell solutions in general relativity, preprint, 2020 | arXiv

[56] A. Touati Geometric optics approximation for the einstein vacuum equations, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 3109-3200 | DOI | Zbl

[57] A. Touati The reverse Burnett conjecture for null dusts, preprint, 2024 | arXiv

[58] D. Christodoulou Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 8, pp. 1131-1220 | DOI

[59] G. Métivier The mathematics of nonlinear optics, Handbook of Differential Equations (C. M. Dafermos; M. Pokorný, eds.) (Handbook of Differential Equations: Evolutionary Equations), Volume 5, North-Holland, Amsterdam, 2009, pp. 169-313 | DOI | Zbl

[60] J. Rauch Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI, 2012 | DOI

[61] P. D. Lax Asymptotic solutions of oscillatory initial value problems, Duke Math. J., Volume 24 (1957), pp. 627-646 | DOI | Zbl

[62] L. Garding; T. Kotake; J. Leray Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées. (Problème de Cauchy I bis et VI), Bull. Soc. Math. Fr., Volume 92 (1964), pp. 263-361 | DOI | Zbl

[63] P.-Y. Jeanne Geometric optics for gauge invariant semilinear systems, Mém. Soc. Math. Fr., Nouv. Sér., Volume 90 (2002), p. vi + 160 https://smf.emath.fr/publications/optique-geometrique-pour-des-systemes-semi-lineaires-avec-invariance-de-jauge | Zbl

[64] T. Salvi Multi-phase high frequency solutions to Klein–Gordon–Maxwell equations in Lorenz gauge in (3 + 1) Minkowski spacetime, preprint, 2024 | arXiv

[65] J. K. Hunter; J. B. Keller Weakly nonlinear high frequency waves, Commun. Pure Appl. Math., Volume 36 (1983), pp. 547-569 | DOI | Zbl

[66] J.-L. Joly; G. Metivier; J. Rauch Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., Volume 70 (1993) no. 2, pp. 373-404 | DOI | Zbl

[67] Y. Choquet-Bruhat; V. Moncrief An existence theorem for the reduced Einstein equation, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 153-159 (MR: 1288395) | Zbl

[68] Y. Choquet-Bruhat; V. Moncrief Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, Volume 2 (2001) no. 6, pp. 1007-1064 | DOI | Zbl

[69] C. Huneau Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case. II, Asymp. Analy., Volume 96 (2016) no. 1, pp. 51-89 | DOI

[70] C. Huneau Stability of Minkowski space–time with a translation space-like Killing field, Ann. PDE, Volume 4 (2018) no. 1, 12 | DOI

[71] S. Alexakis; N. T. Carruth Squeezing a fixed amount of gravitational energy to arbitrarily small scales, in 𝕌(1) symmetry, preprint, 2022 | arXiv

[72] J. Luk; M. Van de Moortel Nonlinear interaction of three impulsive gravitational waves I: main result and the geometric estimates, preprint, 2021 ([gr-qc]) | arXiv

[73] J. Luk; M. Van de Moortel Nonlinear interaction of three impulsive gravitational waves. II: The wave estimates, Ann. PDE, Volume 9 (2023) no. 1, 10 | DOI | Zbl

[74] C. Huneau; J. Luk Einstein equations under polarized 𝕌(1) symmetry in an elliptic gauge, Commun. Math. Phys., Volume 361 (2018) no. 3, pp. 873-949 | DOI | Zbl

[75] A. Touati Einstein vacuum equations with 𝕌(1) symmetry in an elliptic gauge: Local well-posedness and blow-up criterium, J. Hyperbolic Differ. Equ., Volume 19 (2022) no. 04, pp. 635-715 | DOI | Zbl

[76] A. J. Fang Nonlinear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2021 | arXiv

[77] A. J. Fang Linear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2022 | arXiv

[78] P. Hintz; A. Vasy The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., Volume 220 (2018) no. 1, pp. 1-206 | DOI

[79] F. Pretorius Evolution of binary black-hole spacetimes, Phys. Rev. Lett., Volume 95 (2005), 121101 | DOI

[80] Y. Choquet-Bruhat; H. Friedrich Motion of isolated bodies, Class. Quantum Gravity, Volume 23 (2006) no. 20, pp. 5941-5949 | DOI

[81] A. Touati High-frequency solutions to the constraint equations, Commun. Math. Phys., Volume 402 (2023) no. 1, pp. 97-140 | DOI | Zbl

[82] N. Burq Semi-classical measures and defect measures, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834, Société Mathématique de France, Paris, 1997, pp. 167-195 ex (French) | Zbl

[83] P. Gérard Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | Zbl

[84] L. Tartar H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 3–4, pp. 193-230 | DOI | Zbl

[85] G. A. Francfort; F. Murat Oscillations and energy densities in the wave equation, Commun. Partial Differ. Equ., Volume 17 (1992) no. 11–12, pp. 1785-1865 | DOI | Zbl

[86] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl

[87] N. Burq; P. Gérard A necessary and sufficient condition for the exact controllability of the wave equation, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 325 (1997) no. 7, pp. 749-752 | DOI | Zbl

[88] J. L. Joly; G. Métivier; J. Rauch Trilinear compensated compactness and nonlinear geometric optics, Ann. Math. (2), Volume 142 (1995) no. 1, pp. 121-169 | DOI | Zbl

[89] A. D. Ionescu; B. Pausader The Einstein–Klein–Gordon coupled system: global stability of the Minkowski solution, Annals of Mathematics Studies, 213, Princeton University Press, Princeton, NJ, 2022

[90] D. Christodoulou The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009 | DOI

[91] M. Dafermos; G. Holzegel; I. Rodnianski The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019) no. 1, pp. 1-214 | DOI | Zbl

[92] S. Klainerman; F. Nicolò The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI

[93] J. Luk On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not., Volume 2012 (2012) no. 20, pp. 4625-4678 | DOI | Zbl

[94] J. Luk; I. Rodnianski Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations, Camb. J. Math., Volume 5 (2017) no. 4, pp. 435-570 | DOI

[95] J. Luk; I. Rodnianski Local propagation of impulsive gravitational waves, Commun. Pure Appl. Math., Volume 68 (2015) no. 4, pp. 511-624 | DOI

[96] S. W. Hawking Gravitational radiation from collapsing cosmic string loops, Phys. Lett. B, Volume 246 (1990) no. 1, pp. 36-38 | DOI

[97] R. Penrose Naked singularities, 6th Texas symposium on Relativistic astrophysics. New York, NY, USA, December 18–22, 1972, New York Academy of Sciences, New York, 1973, pp. 125-134 | Zbl

[98] L. Bigorgne; D. Fajman; J. Joudioux; J. Smulevici; M. Thaller Asymptotic stability of Minkowski space–time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 1, pp. 1-147 | DOI

[99] M. Taylor The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system, Ann. PDE, Volume 3 (2017) no. 1, 9 | DOI

[100] H. Andréasson; D. Fajman; M. Thaller Models for self-gravitating photon shells and geons, Ann. Henri Poincaré, Volume 18 (2017) no. 2, pp. 681-705 | DOI

[101] G. Lebeau Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306 | Zbl

[102] G. Alì; J. K. Hunter Large amplitude gravitational waves, J. Math. Phys., Volume 40 (1999) no. 6, pp. 3035-3052 | DOI

[103] G. Alí; J. K. Hunter Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 10, pp. 1522-1557 | DOI

[104] S. Klainerman; I. Rodnianski On the formation of trapped surfaces, Acta Math., Volume 208 (2012) no. 2, pp. 211-333 | DOI

[105] X. An; J. Luk Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv. Theor. Math. Phys., Volume 21 (2017) no. 1, pp. 1-120 | DOI

[106] A. Abrahams; A. Anderson; Y. Choquet-Bruhat; J. W. jun York Un système hyperbolique non strict pour les équations d’Einstein, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 12, pp. 835-841

[107] J. Leray; Y. Ohya Équations et systèmes non-linéaires, hyperboliques non-stricts, Math. Ann., Volume 170 (1967), pp. 167-205 https://eudml.org/doc/161535 | DOI

[108] Y. Choquet-Bruhat Nonstrict and strict hyperbolic systems for the Einstein equations, preprint, 2001 | arXiv

Cité par Sources :

Commentaires - Politique