[La conjecture de Burnett en relativité générale]
Nous passons en revue la littérature sur la conjecture de Burnett en relativité générale, qui relie les limites faibles des solutions du vide à la théorie cinétique relativiste. Une attention particulière est portée sur le lien entre ces travaux et les premiers résultats de Choquet-Bruhat concernant les ondes gravitationnelles haute fréquence et l’optique géométrique.
We present the literature on Burnett’s conjecture in general relativity, which relate weak limits of vacuum solutions to relativistic kinetic theory. A special care is put on relating these works with early Choquet-Bruhat’s results on high-frequency gravitational waves and geometric optics.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Équations d’Einstein, Rétroaction, Théorie cinétique relativiste, Compacité compensée, Optique géométrique, Ondes gravitationnelles haute fréquence
Arthur Touati 1

@article{CRMECA_2025__353_G1_455_0, author = {Arthur Touati}, title = {Burnett{\textquoteright}s conjecture in general relativity}, journal = {Comptes Rendus. M\'ecanique}, pages = {455--476}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.288}, language = {en}, }
Arthur Touati. Burnett’s conjecture in general relativity. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 455-476. doi : 10.5802/crmeca.288. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.288/
[1] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI
[2] General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009
[3] The high-frequency limit in general relativity, J. Math. Phys., Volume 30 (1989) no. 1, pp. 90-96 | DOI | Zbl
[4] Construction de solutions radiatives approchées des équations d’Einstein, Commun. Math. Phys., Volume 12 (1969), pp. 16-35 http://projecteuclid.org/euclid.cmp/1103841306 | DOI
[5] Method of the self-consistent field in general relativity and its application to the gravitational geon, Phys. Rev., Volume 135 (1964), p. B271-B278 | DOI | Zbl
[6] Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics, Phys. Rev., Volume 166 (1968), pp. 1263-1271 | DOI
[7] Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev., Volume 166 (1968), pp. 1272-1279 | DOI
[8] The averaged Lagrangian and high-frequency gravitational waves, Commun. Math. Phys., Volume 30 (1973) no. 2, pp. 153-169 | DOI
[9] New framework for analyzing the effects of small scale inhomogeneities in cosmology, Phys. Rev. D, Volume 83 (2011) no. 8, 084020 | DOI
[10] Une Mathématicienne dans Cet étrange Univers : Mémoires, Odile Jacob, Paris, 2016
[11] High-frequency solutions to the Einstein equations, Class. Quantum Gravity, Volume 41 (2024) no. 14, 143002 | DOI | Zbl
[12] Näherungsweise integration der feldgleichungen der gravitation, Sitzungsber. Kgl. Preuss. Akad. Wiss., Volume 1916 (1916), pp. 688-696 | Zbl
[13] Gravitation, W. H. Freeman and Co., San Francisco, CA, 1973
[14] Ondes asymptotiques pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci. Paris Sér. A, Volume 264 (1967), pp. 625-628 | Zbl
[15] Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures Appl. (9), Volume 48 (1969), pp. 117-158 | Zbl
[16] Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci., Volume 264 (1967), pp. 625-638
[17] Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, Sémin. Jean Leray, Volume 3 (1969), pp. 1-10 (MR:255964. Zbl:0177.36404) | Zbl
[18] Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990 | DOI
[19] Approximate radiative solutions of Einstein–Maxwell equations, Relativity and Gravitation (G. Kuper Charles, ed.), Gordon and Breach Science Publishers, Inc, New York, 1971, pp. 81-86 https://www.osti.gov/biblio/4661970
[20] Ondes gravitationnelles à haute fréquence et interaction avec la matière, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 2, pp. 117-124 | Zbl
[21] High-frequency, self-gravitating, charged scalar fields, Gen. Relativ. Gravit., Volume 8 (1977) no. 8, pp. 561-571 | DOI
[22] High frequency asymptotic solutions of Yang–Mills and associated fields, J. Math. Phys., Volume 24 (1983) no. 2, pp. 377-379 | DOI | Zbl
[23] Ondes à haute fréquence pour la gravitation avec termes de Gauss–Bonnet, C. R. Acad. Sci. Paris Sér. I Math., Volume 307 (1988) no. 12, pp. 693-696 | Zbl
[24] High frequency waves for stringy gravity, Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A, B (Teaneck, NJ) (D. G. Blair; M. J. Buckingham; R. Ruffini, eds.), World Scientific Publishing, Singapore, 1989, pp. 349-361 (Perth, 1988). MR:1056882
[25] The Einstein–Vlasov system/kinetic theory, Living Rev. Relativ., Volume 14 (2011), 4 | DOI | Zbl
[26] Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. (Cauchy problem for the Einstein-Liouville integro-differential system), Ann. Inst. Fourier, Volume 21 (1971) no. 3, pp. 181-201 https://eudml.org/doc/74046 | DOI | Zbl
[27] The Newtonian limit for asymptotically flat solutions of the Vlasov–Einstein system, Commun. Math. Phys., Volume 163 (1994) no. 1, pp. 89-112 | DOI | Zbl
[28] Compensated compactness and corrector stress tensor for the Einstein equations in symmetry, Port. Math. (N.S.), Volume 77 (2020) no. 3–4, pp. 409-421 | DOI | Zbl
[29] The General Theory of Homogenization, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009 | DOI
[30] Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 267-282 | DOI | Zbl
[31] The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, NM, 1984) (Lectures in Applied Mathematics), Volume 23, American Mathematical Society, Providence, RI, 1986, pp. 293-326 | Zbl
[32] Compacite par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., Volume 5 (1978), pp. 489-507 https://eudml.org/doc/83787 | Zbl
[33] Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. 4, Edinburgh 1979 (Research Notes in Mathematics), Volume 39, Pitman Publishing Ltd., London, 1979, pp. 136-212 | Zbl
[34] Dissipative continuous Euler flows, Invent. Math., Volume 193 (2013) no. 2, pp. 377-407 | DOI | Zbl
[35] Weak stability and closure in turbulence, Phil. Trans. R. Soc. A (2022) no. 380, 20210091 | DOI
[36] A proof of Onsager’s conjecture, Ann. Math. (2), Volume 188 (2018) no. 3, pp. 871-963 | DOI | Zbl
[37] Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | DOI | Zbl
[38] Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Differ. Equ., Volume 166 (2000) no. 1, pp. 175-250 | DOI | Zbl
[39] Space time resonances [after Germain, Masmoudi, Shatah], Séminaire Bourbaki Volume 2011/2012 exposés 1043-1058 (Astérisque, no. 352), Société mathématique de France, 2013 | Zbl
[40] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993
[41] The global stability of Minkowski space–time in harmonic gauge, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1401-1477 | DOI | Zbl
[42] The null condition and asymptotic expansions for the Einstein equations, Ann. Phys. (8), Volume 9 (2000) no. 3–5, pp. 258-266 | DOI | Zbl
[43] The weak null condition for Einstein’s equations, C. R., Math., Acad. Sci. Paris, Volume 336 (2003) no. 11, pp. 901-906 | DOI | Zbl
[44] The bounded L curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI | Zbl
[45] Dark energy from structure: a status report, Gen. Relativ. Gravit., Volume 40 (2008) no. 2, pp. 467-527 | DOI | Zbl
[46] On cosmic acceleration without dark energy, New J. Phys., Volume 8 (2006) no. 12, 322 | DOI
[47] Examples of backreaction of small-scale inhomogeneities in cosmology, Phys. Rev. D, Volume 87 (2013), 124037 | DOI | Zbl
[48] Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?, Class. Quantum Gravity, Volume 32 (2015) no. 21, 215021 | DOI | Zbl
[49] Comments on backreaction, preprint, 2015 | arXiv
[50] Oscillations in wave map systems and homogenization of the Einstein equations in symmetry, preprint, 2021 | arXiv
[51] High-frequency backreaction for the Einstein equations under polarized -symmetry, Duke Math. J., Volume 167 (2018) no. 18, pp. 3315-3402 | DOI | Zbl
[52] Trilinear compensated compactness and Burnett’s conjecture in general relativity, Ann. Sci. Éc. Norm. Supér. (4), Volume 57 (2024) no. 2, pp. 385-472 | DOI | Zbl
[53] Burnett’s conjecture in generalized wave coordinates, preprint, 2024 | arXiv
[54] High-frequency backreaction for the Einstein equations under symmetry: from Einstein-dust to Einstein–Vlasov, 2024 (In preparation)
[55] High-frequency limits and null dust shell solutions in general relativity, preprint, 2020 | arXiv
[56] Geometric optics approximation for the einstein vacuum equations, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 3109-3200 | DOI | Zbl
[57] The reverse Burnett conjecture for null dusts, preprint, 2024 | arXiv
[58] Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 8, pp. 1131-1220 | DOI
[59] The mathematics of nonlinear optics, Handbook of Differential Equations (C. M. Dafermos; M. Pokorný, eds.) (Handbook of Differential Equations: Evolutionary Equations), Volume 5, North-Holland, Amsterdam, 2009, pp. 169-313 | DOI | Zbl
[60] Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI, 2012 | DOI
[61] Asymptotic solutions of oscillatory initial value problems, Duke Math. J., Volume 24 (1957), pp. 627-646 | DOI | Zbl
[62] Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées. (Problème de Cauchy I bis et VI), Bull. Soc. Math. Fr., Volume 92 (1964), pp. 263-361 | DOI | Zbl
[63] Geometric optics for gauge invariant semilinear systems, Mém. Soc. Math. Fr., Nouv. Sér., Volume 90 (2002), p. vi + 160 https://smf.emath.fr/publications/optique-geometrique-pour-des-systemes-semi-lineaires-avec-invariance-de-jauge | Zbl
[64] Multi-phase high frequency solutions to Klein–Gordon–Maxwell equations in Lorenz gauge in (3 + 1) Minkowski spacetime, preprint, 2024 | arXiv
[65] Weakly nonlinear high frequency waves, Commun. Pure Appl. Math., Volume 36 (1983), pp. 547-569 | DOI | Zbl
[66] Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., Volume 70 (1993) no. 2, pp. 373-404 | DOI | Zbl
[67] An existence theorem for the reduced Einstein equation, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 153-159 (MR: 1288395) | Zbl
[68] Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, Volume 2 (2001) no. 6, pp. 1007-1064 | DOI | Zbl
[69] Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case. II, Asymp. Analy., Volume 96 (2016) no. 1, pp. 51-89 | DOI
[70] Stability of Minkowski space–time with a translation space-like Killing field, Ann. PDE, Volume 4 (2018) no. 1, 12 | DOI
[71] Squeezing a fixed amount of gravitational energy to arbitrarily small scales, in symmetry, preprint, 2022 | arXiv
[72] Nonlinear interaction of three impulsive gravitational waves I: main result and the geometric estimates, preprint, 2021 ([gr-qc]) | arXiv
[73] Nonlinear interaction of three impulsive gravitational waves. II: The wave estimates, Ann. PDE, Volume 9 (2023) no. 1, 10 | DOI | Zbl
[74] Einstein equations under polarized symmetry in an elliptic gauge, Commun. Math. Phys., Volume 361 (2018) no. 3, pp. 873-949 | DOI | Zbl
[75] Einstein vacuum equations with symmetry in an elliptic gauge: Local well-posedness and blow-up criterium, J. Hyperbolic Differ. Equ., Volume 19 (2022) no. 04, pp. 635-715 | DOI | Zbl
[76] Nonlinear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2021 | arXiv
[77] Linear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2022 | arXiv
[78] The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., Volume 220 (2018) no. 1, pp. 1-206 | DOI
[79] Evolution of binary black-hole spacetimes, Phys. Rev. Lett., Volume 95 (2005), 121101 | DOI
[80] Motion of isolated bodies, Class. Quantum Gravity, Volume 23 (2006) no. 20, pp. 5941-5949 | DOI
[81] High-frequency solutions to the constraint equations, Commun. Math. Phys., Volume 402 (2023) no. 1, pp. 97-140 | DOI | Zbl
[82] Semi-classical measures and defect measures, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834, Société Mathématique de France, Paris, 1997, pp. 167-195 ex (French) | Zbl
[83] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | Zbl
[84] H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 3–4, pp. 193-230 | DOI | Zbl
[85] Oscillations and energy densities in the wave equation, Commun. Partial Differ. Equ., Volume 17 (1992) no. 11–12, pp. 1785-1865 | DOI | Zbl
[86] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl
[87] A necessary and sufficient condition for the exact controllability of the wave equation, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 325 (1997) no. 7, pp. 749-752 | DOI | Zbl
[88] Trilinear compensated compactness and nonlinear geometric optics, Ann. Math. (2), Volume 142 (1995) no. 1, pp. 121-169 | DOI | Zbl
[89] The Einstein–Klein–Gordon coupled system: global stability of the Minkowski solution, Annals of Mathematics Studies, 213, Princeton University Press, Princeton, NJ, 2022
[90] The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009 | DOI
[91] The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019) no. 1, pp. 1-214 | DOI | Zbl
[92] The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI
[93] On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not., Volume 2012 (2012) no. 20, pp. 4625-4678 | DOI | Zbl
[94] Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations, Camb. J. Math., Volume 5 (2017) no. 4, pp. 435-570 | DOI
[95] Local propagation of impulsive gravitational waves, Commun. Pure Appl. Math., Volume 68 (2015) no. 4, pp. 511-624 | DOI
[96] Gravitational radiation from collapsing cosmic string loops, Phys. Lett. B, Volume 246 (1990) no. 1, pp. 36-38 | DOI
[97] Naked singularities, 6th Texas symposium on Relativistic astrophysics. New York, NY, USA, December 18–22, 1972, New York Academy of Sciences, New York, 1973, pp. 125-134 | Zbl
[98] Asymptotic stability of Minkowski space–time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 1, pp. 1-147 | DOI
[99] The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system, Ann. PDE, Volume 3 (2017) no. 1, 9 | DOI
[100] Models for self-gravitating photon shells and geons, Ann. Henri Poincaré, Volume 18 (2017) no. 2, pp. 681-705 | DOI
[101] Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306 | Zbl
[102] Large amplitude gravitational waves, J. Math. Phys., Volume 40 (1999) no. 6, pp. 3035-3052 | DOI
[103] Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 10, pp. 1522-1557 | DOI
[104] On the formation of trapped surfaces, Acta Math., Volume 208 (2012) no. 2, pp. 211-333 | DOI
[105] Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv. Theor. Math. Phys., Volume 21 (2017) no. 1, pp. 1-120 | DOI
[106] Un système hyperbolique non strict pour les équations d’Einstein, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 12, pp. 835-841
[107] Équations et systèmes non-linéaires, hyperboliques non-stricts, Math. Ann., Volume 170 (1967), pp. 167-205 https://eudml.org/doc/161535 | DOI
[108] Nonstrict and strict hyperbolic systems for the Einstein equations, preprint, 2001 | arXiv
Cité par Sources :
Commentaires - Politique