Comptes Rendus
Article de recherche
Optomechanical Backreaction of Quantum Field Processes in Dynamical Casimir Effect
[Rétroaction optomécanique des processus de champs quantiques dans l’effet Casimir dynamique]
Comptes Rendus. Physique, Online first (2024), pp. 1-22.

Au cours des deux dernières décennies, les chercheurs en gravitation analogique ont conçu de nombreuses expériences en laboratoire pour tester certains effets importants de la gravité semi-classique ; le rayonnement de Hawking–Unruh dans les fluides et des BEC étant des exemples frappants. L’analogue de la création de particules cosmologiques est l’effet Casimir dynamique, car les deux phénomènes partagent le même mécanisme physique sous-jacent, à savoir l’amplification paramétrique des fluctuations du vide dans le champ quantique par un univers en expansion ou par une frontière se déplaçant rapidement. Il a été démontré que la rétroaction de la création de particules cosmologiques au temps de Planck joue un rôle important dans l’isotropisation et l’homogénéisation de l’univers primitif. Le problème correspondant de la compréhension des effets de rétroaction des processus de champ quantique dans l’effet Casimir dynamique est l’objectif de ce travail. Nous présentons des analyses des processus de champ quantique dans deux systèmes modèles : en 1+1D : un anneau (composé de deux miroirs ponctuels identifiés aux deux extrémités) dont le rayon dépend du temps, et en 3+1D : une boîte conductrice rectangulaire symétrique dont la longueur d’un côté peut changer avec le temps. Dans les deux cas, la dépendance temporelle du rayon ou de la longueur n’est pas prescrite – aucun agent externe n’est présent – mais déterminée uniquement par la rétroaction de la création de particules et les effets connexes. Nous constatons que pour 1+1D, le seul effet de champ quantique dû à l’anomalie de trace tend à accélérer la contraction de l’anneau au-delà de celle déjà présente due à la force d’attraction plus faible de l’effet Casimir statique. Pour la boîte rectangulaire, le taux d’expansion ou de contraction de la boîte est ralenti par rapport à celui dû à l’effet Casimir statique. Nos conclusions concordent avec les résultats obtenus dans les problèmes de rétroaction cosmologique, qui peuvent être résumés dans ce que l’on appelle la loi de Lenz quantique, selon laquelle la rétroaction agit dans le sens de l’opposition à de nouveaux changements, ce qui signifie la suppression de la création de particules et un ralentissement de la dynamique du système. En conclusion, nous mentionnons également deux classes de problèmes connexes, et d’importance théorique pour des recherches ultérieures.

Dynamical Casimir effect (DCE) and cosmological particle creation (CPC) share the same underlying physical mechanism, that of parametric amplification of vacuum fluctuations in the quantum field by an expanding universe or by a fast moving boundary. Backreaction of cosmological particle creation at the Planck time has been shown to play a significant role in the isotropization and homogenization of the early universe. Understanding the backreaction effects of quantum field processes in DCE is the goal of this work. We present analyses of quantum field processes in two model systems: in 1+1D, a ring with time-dependent radius, and in 3+1D, a symmetric rectangular conducting box with one moving side. In both cases the time-dependence of the radius or the length is determined solely by the backreaction of particle creation and related effects, there is no external agent. We find that for 1+1D, the only quantum field effect due to the trace anomaly tends to accelerate the contraction of the ring over and above that due to the attractive force in the static Casimir effect. For the rectangular box the expansion or contraction is slowed down compared to that due to the static Casimir effect. Our findings comply with what is known as the quantum Lenz law, found in cosmological backreaction problems: the backreaction works in the direction of opposing further changes, which means the suppression of particle creation and a slow down of the system dynamics. In conclusion we suggest two related classes of problems of theoretical significance for further investigations.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.186
Keywords: backreaction, dynamical Casimir effect, nonequilibrium quantum field, vacuum fluctuations, quantum fields in curved spacetime, adiabatic regularization
Mot clés : rétroaction, effet Casimir dynamique, champ quantique hors équilibre, fluctuations du vide, champs quantiques dans un espace-temps courbe, régularisation adiabatique

Yu-Cun Xie 1 ; Salvatore Butera 2 ; Bei-Lok Hu 3

1 Department of Physics, University of Maryland, College Park, MD 20742, USA
2 School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
3 Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A5_0,
     author = {Yu-Cun Xie and Salvatore Butera and Bei-Lok Hu},
     title = {Optomechanical {Backreaction} of {Quantum} {Field} {Processes} in {Dynamical} {Casimir} {Effect}},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.186},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Yu-Cun Xie
AU  - Salvatore Butera
AU  - Bei-Lok Hu
TI  - Optomechanical Backreaction of Quantum Field Processes in Dynamical Casimir Effect
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.186
LA  - en
ID  - CRPHYS_2024__25_S2_A5_0
ER  - 
%0 Journal Article
%A Yu-Cun Xie
%A Salvatore Butera
%A Bei-Lok Hu
%T Optomechanical Backreaction of Quantum Field Processes in Dynamical Casimir Effect
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.186
%G en
%F CRPHYS_2024__25_S2_A5_0
Yu-Cun Xie; Salvatore Butera; Bei-Lok Hu. Optomechanical Backreaction of Quantum Field Processes in Dynamical Casimir Effect. Comptes Rendus. Physique, Online first (2024), pp. 1-22. doi : 10.5802/crphys.186.

[1] P. R. Anderson Effects of quantum fields on singularities and particle horizons in the early universe, Phys. Rev. D, Volume 28 (1983) no. 2, pp. 271-285 | DOI

[2] P. R. Anderson; L. Parker Adiabatic regularization in closed Robertson–Walker universes, Phys. Rev. D, Volume 36 (1987) no. 10, pp. 2963-2969 | DOI

[3] L. A. Akopyan; D. A. Trunin Dynamical Casimir effect in nonlinear vibrating cavities, Phys. Rev. D, Volume 103 (2021) no. 6, 065005 | DOI

[4] S. Butera; I. Carusotto Mechanical backreaction effect of the dynamical Casimir emission, Phys. Rev. A, Volume 99 (2019) no. 5, 053815 | DOI

[5] S. Butera; I. Carusotto Quantum fluctuations of the friction force induced by the dynamical Casimir emission, Europhysics Letters, Volume 128 (2020) no. 2, 24002 | DOI

[6] N. D. Birrell; P. C. W. Davies Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984 | Zbl

[7] S. Butera; J.-T. Hsiang; B.-L. B. Hu Fluctuation-Dissipation Relation in Dynamical Casimir Effect (in preparation)

[8] X. Busch; R. Parentani Dynamical Casimir effect in dissipative media: When is the final state nonseparable?, Phys. Rev. D, Volume 88 (2013) no. 4, 045023 | DOI

[9] P. Beltrán-Palau; J. Navarro-Salas; S. Pla Adiabatic regularization for Dirac fields in time-varying electric backgrounds, Phys. Rev. D, Volume 101 (2020) no. 10, 105014 | DOI

[10] X. Busch; R. Parentani; S. Robertson Quantum entanglement due to a modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014) no. 6, 063606 | DOI

[11] S. Butera Influence functional for two mirrors interacting via radiation pressure, Phys. Rev. D, Volume 105 (2022) no. 1, 016023 | DOI

[12] S. Butera Noise and dissipation on a moving mirror induced by the dynamical Casimir emission, J. Phys. Photonics, Volume 5 (2023), 045003 | Zbl

[13] D. M Capper; M. J. Duff Trace anomalies in dimensional regularization, Nuov. Cim. A, Volume 23 (1974) no. 1, pp. 173-183 | DOI

[14] M. Crocce; D. A. R. Dalvit; F. D. Mazzitelli Resonant photon creation in a three-dimensional oscillating cavity, Phys. Rev. A, Volume 64 (2001) no. 1, 013808 | DOI

[15] M. Crocce; D. A. R. Dalvit; F. D. Mazzitelli Quantum electromagnetic field in a three-dimensional oscillating cavity, Phys. Rev. A, Volume 66 (2002) no. 3, 033811 | DOI

[16] S. M. Christensen; S. A. Fulling Trace anomalies and the Hawking effect, Phys. Rev. D, Volume 15 (1977) no. 8, pp. 2088-2104 | DOI

[17] E. A. Calzetta; B.-L. B. Hu Nonequilibrium quantum field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2008 | Zbl

[18] E. A. Calzetta; B.-L. B. Hu Closed-time-path functional formalism in curved spacetime: Application to cosmological back-reaction problems, Phys. Rev. D, Volume 35 (1987) no. 2, pp. 495-509 | DOI

[19] E. A. Calzetta; B.-L. B. Hu Dissipation of quantum fields from particle creation, Phys. Rev. D, Volume 40 (1989) no. 2, pp. 656-659 | DOI

[20] C.-S. Chu; Y. Koyama Adiabatic regularization for gauge fields and the conformal anomaly, Phys. Rev. D, Volume 95 (2017) no. 6, 065025 | DOI

[21] A. Campos; E. Verdaguer Semiclassical equations for weakly inhomogeneous cosmologies, Phys. Rev. D, Volume 49 (1994) no. 4, pp. 1861-1880 | DOI

[22] T.-D. Chung; H. Verlinde Dynamical moving mirrors and black holes, Nucl. Phys., B, Volume 418 (1994) no. 1-2, pp. 305-336 | DOI

[23] A. Campos; E. Verdaguer Stochastic semiclassical equations for weakly inhomogeneous cosmologies, Phys. Rev. D, Volume 53 (1996) no. 4, pp. 1927-1937 | DOI

[24] R. D. Carlitz; R. S. Willey Reflections on moving mirrors, Phys. Rev. D, Volume 36 (1987) no. 8, pp. 2327-2335 | DOI

[25] P. C. W. Davies; S. A. Fulling Radiation from moving mirrors and from black holes, Proc. R. Soc. Lond., Ser. A, Volume 356 (1977) no. 1685, pp. 237-257 | DOI

[26] D. A. R. Dalvit; P. A. M. Neto Decoherence via the dynamical Casimir effect, Phys. Rev. Lett., Volume 84 (2000) no. 5, pp. 798-801 | DOI

[27] D. A. R. Dalvit; P. A. M. Neto; F. D. Mazzitelli Fluctuations, dissipation and the dynamical Casimir effect, Casimir Physics (Lecture Note in Physics), Volume 834, Springer, 2011, pp. 419-457 | DOI

[28] V. Dodonov Fifty years of the dynamical Casimir effect, Physics, Volume 2 (2020) no. 1, pp. 67-104 | DOI

[29] A. del Rio; A. Ferreiro; J. Navarro-Salas; F. Torrenti Adiabatic regularization with a Yukawa interaction, Phys. Rev. D, Volume 95 (2017) no. 10, 105003 | DOI

[30] M. J. Duff Twenty years of the Weyl anomaly, Class. Quant. Grav., Volume 11 (1994) no. 6, pp. 1387-1403 | DOI

[31] S. A. Fulling; P. C. W. Davies Radiation from a moving mirror in two dimensional space-time: conformal anomaly, Proc. R. Soc. Lond., Ser. A, Volume 348 (1976) no. 1654, pp. 393-414 | DOI

[32] M. B. Farías; C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli; A. E. R. López Functional approach to quantum friction: Effective action and dissipative force, Phys. Rev. D, Volume 91 (2015) no. 10, 105020

[33] M. V. Fischetti; J. B. Hartle; B.-L. B. Hu Quantum effects in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries, Phys. Rev. D, Volume 20 (1979) no. 8, pp. 1757-1771 | DOI

[34] C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli Quantum dissipative effects in moving mirrors: A functional approach, Phys. Rev. D, Volume 76 (2007) no. 8, 085007 | DOI

[35] A. M. Fedotov; Y. E. Lozovik; N. B. Narozhny; A. N. Petrosyan Dynamical Casimir effect in a one-dimensional uniformly contracting cavity, Phys. Rev. A, Volume 74 (2006) no. 1, 013806 | DOI

[36] A. Fedotov; N. B. Narozhny; Y. E. Lozovik Instantaneous approximation for the dynamical Casimir effect, J. opt., B Quantum semiclass. opt., Volume 7 (2005) no. 3, p. S64-S68 | DOI

[37] L. H. Ford Cosmological particle production: a review, Rep. Prog. Phys., Volume 84 (2021) no. 11, 116901 | DOI

[38] L. H. Ford Instabilities in Interacting Quantum Field Theories in Nonminkowskian Space-times, Phys. Rev. D, Volume 22 (1980), pp. 3003-3011 | DOI

[39] S. A. Fulling; L. Parker Renormalization in the theory of a quantized scalar field interacting with a Robertson-Walker spacetime, Ann. Phys., Volume 87 (1974) no. 1, pp. 176-204 | DOI

[40] S. A. Fulling; L. Parker; B.-L. B. Hu Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization, Phys. Rev. D, Volume 10 (1974) no. 12, pp. 3905-3924 | DOI

[41] S. A. Fulling Aspects of quantum field theory in curved spacetime, London Mathematical Society Student Texts, 17, Cambridge University Press, 1989

[42] C. R. Galley; R. O. Behunin; B.-L. B. Hu Fate of a black hole with backreaction of Hawking radiation: a moving mirror analog (unpublished)

[43] R. Golestanian; M. Kardar Path-integral approach to the dynamic Casimir effect with fluctuating boundaries, Phys. Rev. A, Volume 58 (1998) no. 3, pp. 1713-1722 | DOI

[44] M. R. R. Good; A. Lapponi; O. Luongo; S. Mancini Modeling black hole evaporative mass evolution via radiation from moving mirrors, Phys. Rev. D, Volume 107 (2023) no. 10, 104004 | DOI

[45] M. R. R. Good; E. V. Linder; F. Wilczek Moving mirror model for quasithermal radiation fields, Phys. Rev. D, Volume 101 (2020) no. 2, 025012 | DOI

[46] A. H. Guth Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981) no. 2, pp. 347-356 | DOI

[47] J. Haro Moving mirrors and the black-body spectrum, J. Phys. A. Math. Gen., Volume 38 (2005) no. 18, p. L307-L315 | DOI

[48] J. B. Hartle Effective-potential approach to graviton production in the early universe, Phys. Rev. Lett., Volume 39 (1977) no. 22, pp. 1373-1376 | DOI

[49] S. W. Hawking Particle creation by black holes, Commun. Math. Phys., Volume 43 (1975) no. 3, pp. 199-220 | DOI

[50] J. Haro; E. Elizalde Hamiltonian approach to the dynamical Casimir effect, Phys. Rev. Lett., Volume 97 (2006) no. 13, 130401 | DOI

[51] J.-T. Hsiang; B.-L. B. Hu Fluctuation-dissipation relation for open quantum systems in a nonequilibrium steady state, Phys. Rev. D, Volume 102 (2020) no. 10, 105006 | DOI

[52] J. B. Hartle; B.-L. B. Hu Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy, Phys. Rev. D, Volume 20 (1979) no. 8, pp. 1772-1782 | DOI

[53] J. B. Hartle; B.-L. B. Hu Quantum effects in the early universe. III. Dissipation of anisotropy by scalar particle production, Phys. Rev. D, Volume 21 (1980) no. 10, pp. 2756-2769 | DOI

[54] B.-L. B. Hu; G. W. Kang; A. Matacz Squeezed vacua and the quantum statistics of cosmological particle creation, Int. J. Mod. Phys. A, Volume 9 (1994) no. 7, pp. 991-1007 | DOI

[55] J.-T. Hsiang; D.-S. Lee; C.-H. Wu Nonequilibrium backreaction on a moving charge and mirror in quantum fields, J. Korean Phys. Soc., Volume 49 (2006), pp. 742-747

[56] B.-L. B. Hu; L. Parker Effect of graviton creation in isotropically expanding universes.[Renormalized energy-momentum tensor], Phys. Lett. A, Volume 63 (1977) no. 3, pp. 217-220 | DOI

[57] B.-L. B. Hu; L. Parker Anisotropy damping through quantum effects in the early universe, Phys. Rev. D, Volume 17 (1978) no. 4, pp. 933-945 | DOI

[58] B.-L. B. Hu; S. Sinha Fluctuation-dissipation relation for semiclassical cosmology, Phys. Rev. D, Volume 51 (1995) no. 4, pp. 1587-1606 | DOI

[59] M. Hotta; M. Shino; M. Yoshimura Moving mirror model of Hawking evaporation, Prog. Theor. Phys., Volume 91 (1994) no. 5, pp. 839-869 | DOI

[60] B.-L. B. Hu Scalar waves in the mixmaster universe. II. Particle creation, Phys. Rev. D, Volume 9 (1974) no. 12, pp. 3263-3281 | DOI

[61] B.-L. B. Hu Calculation of the trace anomaly of the conformal energy-momentum tensor in Kasner spacetime by adiabatic regularization, Phys. Rev. D, Volume 18 (1978) no. 12, pp. 4460-4470 | DOI

[62] B.-L. B. Hu Trace anomaly of the energy-momentum tensor of quantized scalar fields in Robertson–Walker spacetime, Phys. Lett. A, Volume 71 (1979) no. 2-3, pp. 169-173 | DOI

[63] B.-L. B. Hu Quantum dissipative processes and gravitational entropy of the universe, Phys. Lett. A, Volume 97 (1983) no. 9, pp. 368-374 | DOI

[64] B.-L. B. Hu; E. Verdaguer Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime, Cambridge University Press, 2020 | DOI

[65] M. Kardar; R. Golestanian The “friction” of vacuum, and other fluctuation-induced forces, Rev. Mod. Phys., Volume 71 (1999) no. 4, pp. 1233-1245 | DOI

[66] D. Koks; B.-L. B. Hu; A. Matacz; A. Raval Thermal particle creation in cosmological spacetimes: A stochastic approach, Phys. Rev. D, Volume 56 (1997) no. 8, pp. 4905-4915 | DOI

[67] T. J. Kippenberg; K. J. Vahala Cavity opto-mechanics, Opt. Express, Volume 15 (2007) no. 25, pp. 17172-17205 | DOI

[68] T. J. Kippenberg; K. J. Vahala Cavity optomechanics: back-action at the mesoscale, Science, Volume 321 (2008) no. 5893, pp. 1172-1176 | DOI

[69] F. C. Lombardo; F. D. Mazzitelli The quantum open systems approach to the dynamical Casimir effect, Phys. Scr., Volume 82 (2010) no. 3, 038113 | DOI

[70] A. Landete; J. Navarro-Salas; F. Torrentí Adiabatic regularization and particle creation for spin one-half fields, Phys. Rev. D, Volume 89 (2014) no. 4, 044030 | DOI

[71] P. Lähteenmäki; G. S. Paraoanu; J. Hassel; P. J. Hakonen Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 4234-4238 | DOI

[72] V. N. Lukash; A. A. Starobinskiĭ The isotropization of the cosmological expansion owing to particle production, Sov. Phys. JETP, Volume 39 (1974), pp. 742-747

[73] Emil Mottola Quantum fluctuation-dissipation theorem for general relativity, Phys. Rev. D, Volume 33 (1986) no. 8, pp. 2136-2146 | DOI

[74] S. Massar; R. Parentani On the gravitational back reaction to Hawking radiation, preprint, arXiv:gr-qc/9801043 (1998) | arXiv | DOI

[75] V. Macrì; A. Ridolfo; O. Di Stefano; A. F. Kockum; F. Nori; S. Savasta Nonperturbative dynamical casimir effect in optomechanical systems: vacuum casimir-rabi splittings, Phys. Rev. X, Volume 8 (2018) no. 1, 011031 | DOI

[76] S. G. Mamaev; N. N. Trunov Dependence of the vacuum expectation values of the energy-momentum tensor on the geometry and topology of the manifold, Theor. Math. Phys., Volume 38 (1979) no. 3, pp. 345-354 | DOI

[77] P. A. M. Neto; D. A. R. Dalvit Radiation pressure as a source of decoherence, Phys. Rev. A, Volume 62 (2000) no. 4, 042103 | DOI

[78] P. D. Nation; J. R. Johansson; M. P. Blencowe; F. Nori Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., Volume 84 (2012) no. 1, pp. 1-24 | DOI

[79] Y. Nagatani; K. Shigetomi Effective theoretical approach to back reaction of the dynamical Casimir effect in 1+1 dimensions, Phys. Rev. A, Volume 62 (2000) no. 2, 022117 | DOI

[80] N. Obadia; R. Parentani Notes on moving mirrors, Phys. Rev. D, Volume 64 (2001) no. 4, 044019 | DOI

[81] N. Obadia; R. Parentani Uniformly accelerated mirrors. I. Mean fluxes, Phys. Rev. D, Volume 67 (2003) no. 2, 024021 | DOI

[82] N. Obadia; R. Parentani Uniformly accelerated mirrors. II. Quantum correlations, Phys. Rev. D, Volume 67 (2003) no. 2, 024022 | DOI

[83] K. Oku; Y. Tsuchida Back-reaction in the moving mirror effects, Prog. Theor. Phys., Volume 62 (1979) no. 6, pp. 1756-1767 | DOI

[84] L. Parker Quantized fields and particle creation in expanding universes. I, Phys. Rev., Volume 183 (1969) no. 5, pp. 1057-1068 | DOI

[85] L. Parker Cosmological constant and absence of particle creation, Phys. Rev. Lett., Volume 50 (1983) no. 13, pp. 1009-1012 | DOI

[86] L. Parker; S. A. Fulling Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces, Phys. Rev. D, Volume 9 (1974) no. 2, pp. 341-354 | DOI

[87] L. Parker; D. Toms Quantum field theory in curved spacetime: quantized fields and gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2009 | DOI

[88] A. Raval; B.-L. B. Hu; D. Koks Near-thermal radiation in detectors, mirrors, and black holes: A stochastic approach, Phys. Rev. D, Volume 55 (1997) no. 8, pp. 4795-4812 | DOI

[89] K. Sinha; S.-Y. Lin; B.-L. B. Hu Mirror-field entanglement in a microscopic model for quantum optomechanics, Phys. Rev. A, Volume 92 (2015) no. 2, 023852 | DOI

[90] K. Sinha; S.-Y. Lin; B.-L. B. Hu Mirror-field entanglement in a microscopic model for quantum optomechanics, Phys. Rev. A, Volume 92 (2015) no. 2, 023852 | DOI

[91] N. Tuning; H. Verlinde Backreaction on moving mirrors and black hole radiation (1996) | DOI

[92] W. G. Unruh Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI

[93] W. R. Walker Particle and energy creation by moving mirrors, Phys. Rev. D, Volume 31 (1985) no. 4, pp. 767-774 | DOI

[94] R. M. Wald Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, 1994

[95] C.-H. Wu; D.-S. Lee Nonequilibrium dynamics of moving mirrors in quantum fields: Influence functional and the Langevin equation, Phys. Rev. D, Volume 71 (2005) no. 12, 125005 | DOI

[96] Q. Wang; W. G. Unruh Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D, Volume 89 (2014) no. 8, 085009 | DOI

[97] Q. Wang; W. G. Unruh Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D, Volume 89 (2014) no. 8, 085009 | DOI

[98] Y. B. Zel’Dovich Particle production in cosmology, Sov. Phys. JETP, Volume 12 (1970), pp. 307-311

[99] Y. B. Zel’Dovich; A. A. Starobinskiĭ Particle production and vacuum polarization in an anisotropic gravitational field, Sov. Phys. JETP, Volume 34 (1972), pp. 1159-1166

Cité par Sources :

Commentaires - Politique