Les orages sont associés à des nuages de fort développement vertical appelés cumulonimbus qui abritent des régions chargées électriquement. Ils produisent des éclairs au sein du nuage et entre celui-ci et le sol. Au-dessus du nuage, plusieurs types de décharges électriques peuvent se produire et sont regroupés sous le terme TLE, de l’anglais Transient Luminous Event : les blue starters, les blue jets et les jets géants émergent du sommet nuageux et se différencient par l’altitude qu’ils atteignent (environ 20 km, 40 km et 90 km, respectivement), la région du nuage où ils démarrent et la polarité de la charge qu’ils transfèrent ; les sprites (farfadets en français) qui se déclenchent aux alentours de 70 km d’altitude au-dessus des régions stratiformes suite à un éclair nuage-sol positif ; les Elves sous la forme d’un anneau lumineux à la base de l’ionosphère (90 km la nuit) produites par des puissants éclairs nuage-sol. Cet article décrit les principales caractéristiques et les mécanismes de formation de ces TLEs.
Thunderstorms are associated with clouds of strong vertical development called cumulonimbus which contain electrically charged regions. They produce lightning flashes within the cloud and between it and the ground. Above the cloud, several types of electrical discharges can occur and are grouped under the term TLE, from the English Transient Luminous Event: blue starters, blue jets and giant jets emerge from the cloud top and are differentiated by the altitude they reach (around 20 km, 40 km and 90 km, respectively), the region of the cloud where they start and the polarity of the charge they transfer; sprites (farfadet in French) which are triggered at about 70 km altitude above the stratiform regions following a positive cloud-to-ground flash; Elves in the form of luminous rings at the base of the ionosphere (90 km at night) produced by powerful cloud-to-ground lightning. This article describes the main characteristics and formation mechanisms of these TLEs.
Accepté le :
Publié le :
Keywords: Thunderstorm, Electrical discharge, Transient luminous event, Lightning flash, Cumulonimbus
Serge Soula 1

@article{CRMECA_2025__353_G1_747_0, author = {Serge Soula}, title = {La face cach\'ee des orages}, journal = {Comptes Rendus. M\'ecanique}, pages = {747--760}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.301}, language = {fr}, }
Serge Soula. La face cachée des orages. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 747-760. doi : 10.5802/crmeca.301. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.301/
[1] Electrical environment in a storm cloud, J. AerospaceLab, Volume 5 (2012), pp. 1-10 https://aerospacelab.onera.fr/...
[2] Charge separation mechanisms in clouds, Space Sci. Rev., Volume 137 (2008), pp. 335-353 | DOI
[3] Electrical structure in thunderstorm convective regions, 3. Synthesis, J. Geophys. Res., Volume 103 (1998), pp. 14097-14108 | DOI
[4] Lightning, Advanced Physics, Monograph series, McGraw-Hill, New York, 1969
[5] Cloud-to-stratosphere lightning, Weather, Volume 35 (1980), pp. 59-60
[6] Recent observations of lightning discharges from the top of a thundercloud into the air above, J. Geophys. Res., Volume 94 (1989), 13179 | DOI
[7] Television image of a large upward electrical discharge above a thunderstorm system, Science, Volume 249 (1990), pp. 48-51 | DOI
[8] Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video, Geophys. Res. Lett., Volume 21 (1994) no. 10, pp. 875-878 | DOI
[9] The electric field of a thunderstorm and some of its effects, Proc. R. Soc. Lond., Volume 37 (1925), p. 32D | DOI
[10] Lightning induced brightening in the airglow layer, Geophys. Res. Lett., Volume 19 (1992) no. 2, pp. 99-102 | DOI
[11] Occurrences of Sprites and Elves above the sea of Japan near Hokuriku in winter, EOS Suppl., Volume 80 (1999) no. 46, F217 (Abstract)
[12] A cloud-to-space lightning as recorded by the Space Shuttle payload-bay TV cameras, Mon. Weath. Rev., Volume 120 (1992), pp. 1459-1461 | DOI
[13] Video observations of upper atmosphere optical flashes recorded from an aircraft, Geophys. Res. Lett., Volume 20 (1993), pp. 2857-2860 | DOI
[14] Preliminary results from the Sprites 94 Aircraft Campaign : 1. Red sprites, Geophys. Res. Lett., Volume 22 (1995), pp. 1205-1208 | DOI
[15] Preliminary results from the Sprites94 Aircraft Campaign : 2. Blue jets, Geophys. Res. Lett., Volume 22 (1995) no. 10, pp. 1209-1212 | DOI
[16] Blue starters : Brief upward discharges from an intense Arkansas thunderstorm, Geophys. Res. Lett., Volume 23 (1996) no. 16, pp. 2153-2156 | DOI
[17] Sprite observations in the northern territory of Australia, J. Geophys. Res., Volume 105 (2000) no. D4, pp. 4689-4697 | DOI
[18] Sprites over Europe, Geophys. Res. Lett., Volume 28 (2001), pp. 3585-3588 | DOI
[19] Nadir observations of sprites from the International Space Station, J. Geophys. Res., Volume 109 (2004), A02306 | DOI
[20] Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., Volume 102 (1997) no. A3, pp. 4529-4561 | DOI
[21] High speed video of initial sprite development, Geophys. Res. Lett., Volume 26 (1999), pp. 3201-3204 | DOI
[22] Electrical discharge from a thundercloud top to the lower ionosphere, Nature, Volume 416 (2002), pp. 152-154 | DOI
[23] Optically perceptible characteristics of sprites observed in Central Europe in 2007–2009, J. Atmos. Sol.-Terr. Phys., Volume 92 (2013), pp. 151-177 | DOI
[24] et al. Multi-instrumental analysis of large sprite events and their producing storm in southern France, Atmos. Res., Volume 135 (2014), pp. 415-431 | DOI
[25] Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., Volume 101 (1996), pp. 29641-29652 | DOI
[26] Sprites triggered by negative lightning discharges, Geophys. Res. Lett., Volume 26 (1999) no. 24, pp. 3605-3608 | DOI
[27] Observations of the relationship between sprite morphology and in-cloud lightning processes, J. Geophys. Res., Volume 111 (2006), D15203 | DOI
[28] Sprite spectra ; N2 1 PG band identification, Geophys. Res. Lett., Volume 22 (1995) no. 19, pp. 2633-2636 | DOI
[29] Implication of lightning charge moment changes for sprite initiation, J. Geophys. Res., Volume 110 (2005), A04304 | DOI
[30] The interaction with the lower ionosphere of electromagnetic pulses from lightning : Excitation of optical emissions, Geophys. Res. Lett., Volume 20 (1993) no. 23, pp. 2675-2678 | DOI
[31] Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges, J. Geophys. Res., Volume 115 (2010), A00E17 | DOI
[32] Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island, J. Geophys. Res., Volume 116 (2011), D19103 | DOI
[33] Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet, Nat. Geosci., Volume 2 (2009) no. 9, pp. 617-620 | DOI
[34] Lightning : Physics and Effects, Cambridge University Press, Cambridge, 2003 | DOI
[35] High production of gigantic jets by a thunderstorm over Indian Ocean, J. Geophys. Res., Volume 128 (2023), e2023JD039486 | DOI
[36] Upward lectrical discharges from thunderstorms, Nat. Geosci., Volume 1 (2008) no. 4, pp. 233-237 | DOI
[37] Observation of the onset of a blue jet into the stratosphere, Nature, Volume 589 (2021) no. 7842, pp. 371-375 | DOI
[38] Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm, Geophys. Res. Lett., Volume 38 (2011), L17804 | DOI
Cité par Sources :
Commentaires - Politique