[Aspects microphysiques et électriques d'un modèle explicite de nuage : description et étude d'un orage académique]
Un schéma d'électrisation, cohérent avec la paramétrisation microphysique en phase mixte, a été développé pour le modèle numérique de nuage MésoNH. Il y a quatre étapes successives : (i) la séparation de charges est supposée résulter uniquement des processus non-inductifs ; (ii) les charges électriques emportées par les différents types d'hydrométéores sont transportées par le flux atmosphérique et redistribuées par les processus microphysiques ; (iii) le champ électrique est déduit de l'intégration d'une équation de Poisson modifiée ; (iv) une paramétrisation des éclairs simule le déclenchement, la propagation et les branchements pseudo-fractals des décharges et les neutralisations de charge associées. Deux expériences numériques sont conduites, d'abord pour évaluer les performances du schéma d'éclairs, ensuite pour tester l'évolution simulés des caractéristiques électriques d'un orage supercellulaire idéalisé.
An electrification scheme, consistent with the mixed-phase microphysical parameterization, has been developed for the French cloud resolving model MésoNH. There are four successive steps: (i) charge separation is assumed to result only from non-inductive processes; (ii) electrical charges carried by the different hydrometeor species are transported along the air flow and redistributed according to the microphysical processes; (iii) the electric field is deduced from the integration of a modified Poisson equation; (iv) a lightning parameterization simulates triggering, propagation and pseudo-fractal branching of the flashes and associated charge neutralization. Two numerical experiments are conducted firstly to evaluate the performances of the lightning scheme, secondly to test the simulated evolution of the electrical characteristics of a idealized supercellular storm.
Mots-clés : modélisation numérique, nuages convectifs, électrisation des nuages, paramétrisation des éclairs
Gilles Molinié 1 ; Jean-Pierre Pinty 1 ; Frank Roux 1
@article{CRPHYS_2002__3_10_1305_0, author = {Gilles Molini\'e and Jean-Pierre Pinty and Frank Roux}, title = {Some microphysical and electrical aspects of a {Cloud} {Resolving} {Model:} description and thunderstorm case study}, journal = {Comptes Rendus. Physique}, pages = {1305--1324}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01409-3}, language = {en}, }
TY - JOUR AU - Gilles Molinié AU - Jean-Pierre Pinty AU - Frank Roux TI - Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study JO - Comptes Rendus. Physique PY - 2002 SP - 1305 EP - 1324 VL - 3 IS - 10 PB - Elsevier DO - 10.1016/S1631-0705(02)01409-3 LA - en ID - CRPHYS_2002__3_10_1305_0 ER -
%0 Journal Article %A Gilles Molinié %A Jean-Pierre Pinty %A Frank Roux %T Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study %J Comptes Rendus. Physique %D 2002 %P 1305-1324 %V 3 %N 10 %I Elsevier %R 10.1016/S1631-0705(02)01409-3 %G en %F CRPHYS_2002__3_10_1305_0
Gilles Molinié; Jean-Pierre Pinty; Frank Roux. Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1305-1324. doi : 10.1016/S1631-0705(02)01409-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01409-3/
[1] Relations of kinematics, microphysics and electrification in an isolated mountain thunderstorm, J. Atmos. Sci, Volume 43 (1986), pp. 2098-2115
[2] A numerical modeling study of a montana thunderstorm. 2. Model results versus observations involving electrical, J. Geoph. Res, Volume 92 (1987), pp. 5661-5675
[3] Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm, J. Atmos. Sci, Volume 51 (1994), pp. 833-851
[4] A modeling study on the early electrical development of tropical convection: Continental and oceanic (monsoon) storms, Mon. Wea. Rev, Volume 122 (1994), pp. 1852-1877
[5] E.R. Mansell, Electrification and lightning in simulated supercell and non-supercell thunderstorms, Ph.D. thesis, Univ. Oklahoma, 2000
[6] Relationships between ligthning activity and various thundercloud parameters: satellite and modelling studies, J. Atmos. Res, Volume 51 (1999), pp. 221-236
[7] The lightning imaging sensor, Int. Conf. on Atmospheric Electricity, Guntersville, AL, Amer. Meteor. Society, 1999, pp. 746-749
[8] Forte observations of lightning radio-frequency signatures: Capabilities and basic results, Radio Sci (1999)
[9] A gps-based three-dimensional lightning mapping system: Initial observations, Geoph. Res. Lett, Volume 26 (1999), pp. 3573-3576
[10] Lightning activity for the July 10, 1996, storm during the stratosphere-troposhere experiment: Radiation, aerosol, and ozone-a (STERAO-A) experiment, J. Geoph. Res, Volume 106 (2001), pp. 10151-10172
[11] The meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations, Ann. Geoph, Volume 16 (1998), pp. 90-109
[12] A lightning parameterization for numerical cloud models, J. Appl. Meteor, Volume 40 (2001), pp. 459-478
[13] High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization, Meteorol. Atmos. Phys, Volume 72 (2000), pp. 203-221
[14] The Electrical Nature of Storms, Oxford University Press, 1998
[15] Horizontal distribution of electrical and meteorological conditions accross the stratiform region of a mesoscale convective system, Mon. Wea. Rev, Volume 122 (1994), pp. 1777-1797
[16] The tripole structure of thunderstorm, J. Geoph. Res, Volume 94 (1989), pp. 13151-13167
[17] Lightning initiation-conventional and runaway-breakdown hypotheses, Quart. J. Roy. Meteor. Soc, Volume 127 (2001), pp. 2683-2704
[18] Electric field magnitudes and lightning initiation in thunderstorms, J. Geoph. Res, Volume 100 (1995), pp. 7097-7103
[19] Model of electric charges in thunderstorms and associated lightning, J. Geoph. Res, Volume 103 (1998), pp. 23299-23308
[20] Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteor, Volume 22 (1983), pp. 1065-1092
[21] On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., No 32, Amer. Meteor. Society, 1969
[22] A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets, J. Atmos. Sci, Volume 51 (1994), pp. 2046-2074
[23] A double-moment multiple phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations, J. Atmos. Sci, Volume 52 (1995), pp. 1001-1033
[24] Charging mechanisms in clouds and thunderstorms, The Earth's Electrical Environment, Studies in Geophysics, Nat. Academic Press, Washington, DC, 1986, pp. 114-130
[25] Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci, Volume 35 (1978), pp. 1536-1548
[26] Laboratory studies of the charging of soft-hail during ice crystal interactions, Quart. J. Roy. Meteor. Soc, Volume 103 (1983), pp. 609-630
[27] Temperature dependence of static charging in ice growing by riming, J. Atmos. Sci, Volume 52 (1995), pp. 4515-4520
[28] Laboratory studies of the influence of cloud droplet size on charge transfer during crystal-graupel collisions, J. Geoph. Res, Volume 103 (1998), pp. 8985-8996
[29] An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model, J. Geoph. Res, Volume 106 (2001), pp. 1165-1192
[30] Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm, J. Geoph. Res, Volume 90 (1985), pp. 6079-6086
[31] The effect of liquid water on thunderstorm charging, J. Geoph. Res (1991)
[32] Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/grauplen collisions, J. Geoph. Res, Volume 103 (1998), pp. 13949-13956
[33] A double-moment multiple phase four-class bulk ice scheme. Part I: description, J. Atmos. Sci, Volume 51 (1994), pp. 249-280
[34] Precipitation and cloud electricity, Quart. J. Roy. Meteor. Soc, Volume 91 (1965), pp. 60-72
[35] A contribution to the electrostatic theory of a lightning discharge, J. Geoph. Res, Volume 65 (1960), pp. 1873-1878
[36] Fractal dimension of dielectric breakdown, Phys. Rev. Lett (1984)
[37] Physical mechanisms for intracloud lightning discharges, Technical Phys, Volume 44 (1993), pp. 472-475
[38] The simulation of three-dimensionnal convective storm dynamics, J. Atmos. Sci, Volume 35 (1978), pp. 1070-1096
[39] The relationship between lightning type and convective state of thunderclouds, J. Geoph. Res, Volume 94 (1989), pp. 13213-13220
[40] Lightning evolution related to radar-derived microphysics in the 21 July 1998 eulinox supercell storm, J. Atmos. Res (2001)
[41] Regions where lightning flashes began, J. Geoph. Res, Volume 96 (1991), pp. 5099-5112
[42] Three-dimensional lightning observations of cloud-to-ground flashes using broadband interferometers, J. Atmosph. Solar-Terr. Phys (2002)
[43] The spatial and temporal development of intracloud lightning, J. Geoph. Res, Volume 101 (1996), pp. 26641-26668
Cité par Sources :
Commentaires - Politique