Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study
[Aspects microphysiques et électriques d'un modèle explicite de nuage : description et étude d'un orage académique]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1305-1324.

Un schéma d'électrisation, cohérent avec la paramétrisation microphysique en phase mixte, a été développé pour le modèle numérique de nuage MésoNH. Il y a quatre étapes successives : (i) la séparation de charges est supposée résulter uniquement des processus non-inductifs ; (ii) les charges électriques emportées par les différents types d'hydrométéores sont transportées par le flux atmosphérique et redistribuées par les processus microphysiques ; (iii) le champ électrique est déduit de l'intégration d'une équation de Poisson modifiée ; (iv) une paramétrisation des éclairs simule le déclenchement, la propagation et les branchements pseudo-fractals des décharges et les neutralisations de charge associées. Deux expériences numériques sont conduites, d'abord pour évaluer les performances du schéma d'éclairs, ensuite pour tester l'évolution simulés des caractéristiques électriques d'un orage supercellulaire idéalisé.

An electrification scheme, consistent with the mixed-phase microphysical parameterization, has been developed for the French cloud resolving model MésoNH. There are four successive steps: (i) charge separation is assumed to result only from non-inductive processes; (ii) electrical charges carried by the different hydrometeor species are transported along the air flow and redistributed according to the microphysical processes; (iii) the electric field is deduced from the integration of a modified Poisson equation; (iv) a lightning parameterization simulates triggering, propagation and pseudo-fractal branching of the flashes and associated charge neutralization. Two numerical experiments are conducted firstly to evaluate the performances of the lightning scheme, secondly to test the simulated evolution of the electrical characteristics of a idealized supercellular storm.

Publié le :
DOI : 10.1016/S1631-0705(02)01409-3
Keywords: numerical modeling, convective clouds, storm electrification, lightning parameterization
Mot clés : modélisation numérique, nuages convectifs, électrisation des nuages, paramétrisation des éclairs

Gilles Molinié 1 ; Jean-Pierre Pinty 1 ; Frank Roux 1

1 Laboratoire d'aérologie, Observatoire Midi-Pyrénées, 14, avenue E. Belin, 31400 Toulouse, France
@article{CRPHYS_2002__3_10_1305_0,
     author = {Gilles Molini\'e and Jean-Pierre Pinty and Frank Roux},
     title = {Some microphysical and electrical aspects of a {Cloud} {Resolving} {Model:} description and thunderstorm case study},
     journal = {Comptes Rendus. Physique},
     pages = {1305--1324},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01409-3},
     language = {en},
}
TY  - JOUR
AU  - Gilles Molinié
AU  - Jean-Pierre Pinty
AU  - Frank Roux
TI  - Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1305
EP  - 1324
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01409-3
LA  - en
ID  - CRPHYS_2002__3_10_1305_0
ER  - 
%0 Journal Article
%A Gilles Molinié
%A Jean-Pierre Pinty
%A Frank Roux
%T Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study
%J Comptes Rendus. Physique
%D 2002
%P 1305-1324
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01409-3
%G en
%F CRPHYS_2002__3_10_1305_0
Gilles Molinié; Jean-Pierre Pinty; Frank Roux. Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1305-1324. doi : 10.1016/S1631-0705(02)01409-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01409-3/

[1] C.L. Ziegler; P.S. Ray; D.R. MacGorman Relations of kinematics, microphysics and electrification in an isolated mountain thunderstorm, J. Atmos. Sci, Volume 43 (1986), pp. 2098-2115

[2] J.H. Helsdon; R.D. Farley A numerical modeling study of a montana thunderstorm. 2. Model results versus observations involving electrical, J. Geoph. Res, Volume 92 (1987), pp. 5661-5675

[3] C.L. Ziegler; D.R. MacGorman Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm, J. Atmos. Sci, Volume 51 (1994), pp. 833-851

[4] S.A. Randell; S.C. Rutledge; R.D. Farley; J.H. Helsdon A modeling study on the early electrical development of tropical convection: Continental and oceanic (monsoon) storms, Mon. Wea. Rev, Volume 122 (1994), pp. 1852-1877

[5] E.R. Mansell, Electrification and lightning in simulated supercell and non-supercell thunderstorms, Ph.D. thesis, Univ. Oklahoma, 2000

[6] M.B. Baker; A.M. Blyth; H.J. Christian; J. Latham; K.L. Miller; A.M. Gadian Relationships between ligthning activity and various thundercloud parameters: satellite and modelling studies, J. Atmos. Res, Volume 51 (1999), pp. 221-236

[7] H.J. Christian; R.J. Blakeslee; S.J. Goodman; D.A. Mach; M.F. Stewart; D.E. Buechler; W.J. Koshak; J.M. Hall; W.L. Boeck; K.T. Driscoll; D.J. Bocippio The lightning imaging sensor, Int. Conf. on Atmospheric Electricity, Guntersville, AL, Amer. Meteor. Society, 1999, pp. 746-749

[8] A.R. Jacobson; S.O. Knox; R. Franz; D.C. Enemark Forte observations of lightning radio-frequency signatures: Capabilities and basic results, Radio Sci (1999)

[9] W. Rison; P.R. Thomas; R.J. Krehbiel; T. Hamlin; J. Harlin A gps-based three-dimensional lightning mapping system: Initial observations, Geoph. Res. Lett, Volume 26 (1999), pp. 3573-3576

[10] E. Defer; P. Blanchet; C. Théry; P. Laroche; J.E. Dye; M. Venticinque; K.L. Cummins Lightning activity for the July 10, 1996, storm during the stratosphere-troposhere experiment: Radiation, aerosol, and ozone-a (STERAO-A) experiment, J. Geoph. Res, Volume 106 (2001), pp. 10151-10172

[11] J.P. Lafore; J. Stein; N. Asencio; P. Bougeault; V. Ducrocq; J. Duron; C. Fischer; P. Hereil; P. Mascart; J.P. Pinty; J.L. Redelsperger; E. Richard; J. Vila-Guerau de Arellano The meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations, Ann. Geoph, Volume 16 (1998), pp. 90-109

[12] D.R. Mac Gorman; J.M. Straka; C.L. Ziegler A lightning parameterization for numerical cloud models, J. Appl. Meteor, Volume 40 (2001), pp. 459-478

[13] J. Stein; E. Richard; J.-P. Lafore; J.-P. Pinty; N. Asencio; S. Cosma High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization, Meteorol. Atmos. Phys, Volume 72 (2000), pp. 203-221

[14] D.R. Mc Gorman; W.D. Rust The Electrical Nature of Storms, Oxford University Press, 1998

[15] M. Stolzenburg; T.C. Marshall; W.D. Rust; B.F. Smull Horizontal distribution of electrical and meteorological conditions accross the stratiform region of a mesoscale convective system, Mon. Wea. Rev, Volume 122 (1994), pp. 1777-1797

[16] E.R. Williams The tripole structure of thunderstorm, J. Geoph. Res, Volume 94 (1989), pp. 13151-13167

[17] R. Solomon; V. Schroeder; M.B. Baker Lightning initiation-conventional and runaway-breakdown hypotheses, Quart. J. Roy. Meteor. Soc, Volume 127 (2001), pp. 2683-2704

[18] T.C. Marshall; M. Mc Carthy; W.D. Rust Electric field magnitudes and lightning initiation in thunderstorms, J. Geoph. Res, Volume 100 (1995), pp. 7097-7103

[19] V. Mazur; L.H. Ruhnke Model of electric charges in thunderstorms and associated lightning, J. Geoph. Res, Volume 103 (1998), pp. 23299-23308

[20] Y.-L. Lin; R.D. Farley; H.D. Orville Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteor, Volume 22 (1983), pp. 1065-1092

[21] E. Kessler On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., No 32, Amer. Meteor. Society, 1969

[22] G. Caniaux; J.L. Redelsperger; J.P. Lafore A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets, J. Atmos. Sci, Volume 51 (1994), pp. 2046-2074

[23] B.S. Ferrier; W.-K. Tao; J. Simpson A double-moment multiple phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations, J. Atmos. Sci, Volume 52 (1995), pp. 1001-1033

[24] K.V. Beard; H.R. Ochs Charging mechanisms in clouds and thunderstorms, The Earth's Electrical Environment, Studies in Geophysics, Nat. Academic Press, Washington, DC, 1986, pp. 114-130

[25] T. Takahashi Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci, Volume 35 (1978), pp. 1536-1548

[26] E.R. Jayaratne; C.P.R. Saunders; J. Hallet Laboratory studies of the charging of soft-hail during ice crystal interactions, Quart. J. Roy. Meteor. Soc, Volume 103 (1983), pp. 609-630

[27] E.E. Avila; G.G. Aguirre Varela; G.M. Caranti Temperature dependence of static charging in ice growing by riming, J. Atmos. Sci, Volume 52 (1995), pp. 4515-4520

[28] E.E. Avila; G.M. Caranti; N. Castellano; C.P.R. Saunders Laboratory studies of the influence of cloud droplet size on charge transfer during crystal-graupel collisions, J. Geoph. Res, Volume 103 (1998), pp. 8985-8996

[29] J.H. Helsdon; W.A. Wojcik; R.D. Farley An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model, J. Geoph. Res, Volume 106 (2001), pp. 1165-1192

[30] B. Gardiner; D. Lamb; R.L. Pitter; J. Hallet Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm, J. Geoph. Res, Volume 90 (1985), pp. 6079-6086

[31] C.P.R. Saunders; W.D. Keith; R.P. Mitzeva The effect of liquid water on thunderstorm charging, J. Geoph. Res (1991)

[32] C.P.R. Saunders; S.L. Peck Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/grauplen collisions, J. Geoph. Res, Volume 103 (1998), pp. 13949-13956

[33] B.S. Ferrier A double-moment multiple phase four-class bulk ice scheme. Part I: description, J. Atmos. Sci, Volume 51 (1994), pp. 249-280

[34] Reiter Precipitation and cloud electricity, Quart. J. Roy. Meteor. Soc, Volume 91 (1965), pp. 60-72

[35] H.W. Kasemir A contribution to the electrostatic theory of a lightning discharge, J. Geoph. Res, Volume 65 (1960), pp. 1873-1878

[36] L. Niemeyer; L. Pietronero; H.J. Weismann Fractal dimension of dielectric breakdown, Phys. Rev. Lett (1984)

[37] N.I. Petrov; G.N. Petrova Physical mechanisms for intracloud lightning discharges, Technical Phys, Volume 44 (1993), pp. 472-475

[38] J.B. Klemp; R.B. Wilhelmson The simulation of three-dimensionnal convective storm dynamics, J. Atmos. Sci, Volume 35 (1978), pp. 1070-1096

[39] E.R. Williams; M.E. Weber; R.E. Orville The relationship between lightning type and convective state of thunderclouds, J. Geoph. Res, Volume 94 (1989), pp. 13213-13220

[40] N. Dotzek; H. Höller; C. Thèry; T. Ferh Lightning evolution related to radar-derived microphysics in the 21 July 1998 eulinox supercell storm, J. Atmos. Res (2001)

[41] D.E. Proctor Regions where lightning flashes began, J. Geoph. Res, Volume 96 (1991), pp. 5099-5112

[42] R. Mardiana; Z.I. Kawasaki; T. Morimoto Three-dimensional lightning observations of cloud-to-ground flashes using broadband interferometers, J. Atmosph. Solar-Terr. Phys (2002)

[43] X.M. Shao; P.R. Krehbiel The spatial and temporal development of intracloud lightning, J. Geoph. Res, Volume 101 (1996), pp. 26641-26668

Cité par Sources :

Commentaires - Politique