[Phénomènes de haute altitude associés aux éclairs : sprites, elves et émissions gamma terrestres]
Un ensemble fascinant de phénomènes complexes étudiés lors de la dernière décennie indique que les orages troposphériques et les éclairs associés sont fortement couplés aux régions atmosphériques supérieures. Les éclairs formés à l'intérieur du nuage (à moins de 20 km d'altitude) ont des effets à plus de 40 km d'altitude via l'émission d'impulsions électromagnétiques intenses (EMP) et/ou la production de champs quasi-statiques (QE) élevés. Ces champs QE, dont l'amplitude atteint 1 kV/m, dirigés vers le bas pour des éclairs nuage-sol positifs, peuvent créer des avalanches d'électrons « runaway », d'énergie de l'ordre du MeV, accélérés vers la haute atmosphère, produisant des bouffées d'émission gamma de courte durée (environ 1 ms). Une manifestation spectaculaire de ces champs intenses est le phénomène de « Sprite », grande décharge lumineuse se développant entre 40 et 90 km, initiée par le chauffage d'électrons libres pendant quelques millisecondes suite à un éclair intense. Les phénomènes lumineux appelés « Elves », de durée beaucoup plus brève que les sprites (<1 ms), sont localisés entre 80 et 95 km d'altitude avec une extension latérale beaucoup plus grande (jusqu'à 600 km). Ils sont produits par les effets d'échauffement, d'ionisation et d'émission optique associés aux impulsions EMP rayonnés par les éclairs des deux polarités.
A fascinating set of newly discovered complex phenomena indicate that thunderstorms and lightning discharges are strongly coupled to the overlying upper atmospheric regions. Lightning discharges at cloud altitudes (<20 km) affect altitudes >40 km either via the release of intense electromagnetic pulses (EMPs) and/or the production of intense quasi-static electric (QE) fields. The intense transient QE fields of up to ∼1 kV·m−1, which for positive CG discharges is directed downwards, can avalanche accelerate upward-driven runaway MeV electron beams, producing brief (∼1 ms) flashes of gamma radiation. A spectacular manifestation of these intense fields is the so-called ‘Sprites’, large luminous discharges in the altitude range of ∼40 km to 90 km, which are produced by the heating of ambient electrons for a few to tens of milliseconds following intense lightning flashes. The so-called ‘Elves’ are optical flashes which last much shorter (<1 ms) than sprites, and are typically limited to 80–95 km altitudes with much larger (up to 600 km) lateral extent, being produced by the heating, ionization, and optical emissions due to the EMPs radiated by both positive and negative lightning discharges.
@article{CRPHYS_2002__3_10_1411_0, author = {Umran S. Inan}, title = {Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes}, journal = {Comptes Rendus. Physique}, pages = {1411--1421}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01418-4}, language = {en}, }
Umran S. Inan. Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1411-1421. doi : 10.1016/S1631-0705(02)01418-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01418-4/
[1] The electric field of a thundercloud and some of its effects, Proc. Phys. Soc. London, Volume 37 (1925), p. 32D
[2] Television image of a large upward discharge above a thunderstorm system, Science, Volume 249 (1990), p. 48
[3] Preliminary results from the Sprites94 campaign: Red Sprites, Geophys. Res. Lett., Volume 22 (1995), p. 1205
[4] Recent observations of lightning discharges from the top of a thunderstorm into the clear air above, J. Geophys. Res., Volume 94 (1989), p. 113179
[5] Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., Volume 102 (1997), p. 4529
[6] Telescopic imaging of sprites, Geophys. Res. Lett., Volume 27 (2000), p. 2637
[7] Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., Volume 24 (1997), p. 1731
[8] ELF radiation produced by electrical currents in sprites, Geophys. Res. Lett., Volume 25 (1998), p. 1281
[9] Lightning induced brightening in the airglow layer, Geophys. Res. Lett., Volume 19 (1992), p. 99
[10] Heating and ionization of the lower ionosphere by lightning discharges, Geophys. Res. Lett., Volume 18 (1991), p. 705
[11] Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., Volume 23 (1996), p. 2157
[12] Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘Elves’, Geophys. Res. Lett., Volume 24 (1997), p. 583
[13] Identification of Sprites and Elves with intensified video and broadband array photometry, J. Geophys. Res., Volume 106 (2001) no. A2, p. 1741
[14] Discovery of intense gamma-ray flashes of atmospheric origin, Science, Volume 264 (1994), p. 1313
[15] On the association of terrestrial gamma-ray bursts with lightning and implications for sprites, Geophys. Res. Lett., Volume 23 (1996), p. 1017
[16] Monte Carlo simulation of runaway MeV electron breakdown with application to Red Sprites and terrestrial gamma ray flashes, J. Geophys. Res., Volume 104 (1999), p. 24699
[17] Trapped energetic electron curtains produced by thunderstorm driven relativistic runaway electrons, Geophys. Res. Lett., Volume 27 (2000), p. 1095
[18] Effects of thunderstorm driven runaway electrons in the conjugate hemisphere: Purple sprites, ionization enhancements, and gamma rays, J. Geophys. Res., Volume 106 (2001) no. A12, p. 28841
[19] Subionospheric VLF signatures of nighttime D-region perturbations in the vicinity of lightning discharges, J. Geophys. Res., Volume 93 (1988), p. 11455
Cité par Sources :
Commentaires - Politique