[Évaluation du taux de restitution d’énergie incrémental dans les fissures d’interface avec contact frottant et son application au critère couplé de la mécanique de la rupture finie]
A crack located in a straight and perfectly bonded interface between dissimilar isotropic linear elastic materials with a frictional contact zone adjacent to the crack tip is considered under plane strain conditions. Assuming the Coulomb friction law, the crack-tip stress singularity in such a crack is weaker than the classical square-root singularity. The main difficulty in predicting propagation of such an interface crack is that the Energy Release Rate (ERR) is zero, which is a direct consequence of this weak stress singularity at the crack tip. Therefore, the Griffith fracture criterion, which assumes infinitesimal crack advances, cannot be applied in this case. To overcome this problem a new approach to predict the propagation of an interface crack with a frictional contact zone at the crack tip, based on the Coupled stress and energy Criterion (CC) of Finite Fracture Mechanics (FFM), is proposed and analyzed. In contrast to previous approaches, the critical finite crack advance $\Delta a_\mathrm{c}$ is determined by the CC as a structural parameter given by the overall problem configuration. Two methods for calculating the incremental ERR $G_\mathrm{II} (\Delta a)$ are considered which differ in the treatment of the frictional energy dissipated along the crack advance $\Delta a$. Closed-form expressions for $G_\mathrm{II} (\Delta a)$ are derived for sufficiently large interface cracks when the most singular term of the asymptotic expansion of the elastic solution at the crack tip is dominant along the path of crack advance $\Delta a$ before the crack propagation occurs. In this case, closed-form expressions for the critical crack advance $\Delta a_\mathrm{c}$ and the critical stress intensity factor $K_\mathrm{IIc}$ are derived.
Une fissure située dans une interface droite et parfaitement adhérente entre deux matériaux isotropes linéaires élastiques dissemblables, avec une zone de contact frottant adjacente au bout de la fissure, est considérée en conditions de déformation plane. En supposant la loi de frottement de Coulomb, la singularité de contrainte à l’extrémité de la fissure est plus faible que la singularité classique en racine carrée. La principale difficulté pour prédire la propagation d’une telle fissure d’interface réside dans le fait que le taux de restitution d’énergie (TRE) est nul, ce qui découle directement de cette faible singularité de contrainte au bout de la fissure. Par conséquent, le critère de rupture de Griffith, qui suppose des avancées infinitésimales de la fissure, ne peut pas être appliqué dans ce cas. Pour surmonter ce problème, une nouvelle approche est proposée et analysée afin de prédire la propagation d’une fissure d’interface avec une zone de contact frottant à son extrémité, basée sur le critère couplé en contraintes et en énergie (CC) de la mécanique de la rupture finie (MRF). Contrairement aux approches précédentes, l’avance critique finie de la fissure $\Delta a_\mathrm{c}$ est déterminée par le critère CC comme un paramètre structurel donné par la configuration globale du problème. Deux méthodes pour calculer le TRE incrémental $G_\mathrm{II} (\Delta a)$ sont considérées, qui diffèrent dans le traitement de l’énergie de frottement dissipée au cours de l’avance de fissure $\Delta a$. Des expressions analytiques pour $G_\mathrm{II} (\Delta a)$ sont dérivées pour des fissures d’interface suffisamment longues, lorsque le terme le plus singulier du développement asymptotique de la solution élastique au voisinage de la fissure domine le long du trajet d’avance $\Delta a$, avant que la propagation ne se produise. Dans ce cas, des expressions analytiques pour l’avance critique $\Delta a_\mathrm{c}$ et le facteur d’intensité de contrainte critique $K_\mathrm{IIc}$ sont obtenues.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Fissure d’interface, modèle de contact de Comninou, loi de frottement de Coulomb, singularité faible, taux de restitution d’énergie, intégrale d’Irwin, VCCT
Enrique Graciani 1 ; Vladislav Mantič 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1365_0,
author = {Enrique Graciani and Vladislav Manti\v{c}},
title = {Evaluation of the incremental {ERR} in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics},
journal = {Comptes Rendus. M\'ecanique},
pages = {1365--1383},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.319},
language = {en},
}
TY - JOUR AU - Enrique Graciani AU - Vladislav Mantič TI - Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics JO - Comptes Rendus. Mécanique PY - 2025 SP - 1365 EP - 1383 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.319 LA - en ID - CRMECA_2025__353_G1_1365_0 ER -
%0 Journal Article %A Enrique Graciani %A Vladislav Mantič %T Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics %J Comptes Rendus. Mécanique %D 2025 %P 1365-1383 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.319 %G en %F CRMECA_2025__353_G1_1365_0
Enrique Graciani; Vladislav Mantič. Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1365-1383. doi: 10.5802/crmeca.319
[1] The interface crack, J. Appl. Mech., Volume 44 (1977), pp. 631-636 | Zbl | DOI
[2] The interface crack with friction in the contact zone, J. Appl. Mech., Volume 44 (1977), pp. 780-781 | DOI
[3] Some consequences of the inequality conditions in contact and crack problems, J. Elasticity, Volume 9 (1979), pp. 71-82 | DOI | Zbl
[4] Effect of friction on the interface crack loaded in shear, J. Elasticity, Volume 10 (1980), pp. 203-212 | DOI | Zbl | MR
[5] The stress around a fault of crack in dissimilar media, Bull. Seism. Soc. Am., Volume 49 (1959), pp. 199-204 | DOI | MR
[6] A crack between dissimilar media, J. Appl. Mech., Volume 32 (1965), pp. 400-402 | DOI
[7] Plane problems of cracks in dissimilar media, J. Appl. Mech., Volume 32 (1965), pp. 418-423 | DOI
[8] The strength of adhesive joints using the theory of cracks, Int. J. Fract., Volume 1 (1965), pp. 114-128 | DOI
[9] Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech., Volume 55 (1988), pp. 98-103 | DOI
[10] Mixed mode cracking in layered materials, Advances in Applied Mechanics (J. W. Hutchinson; Theodore Y. Wu, eds.) (Advances in Applied Mechanics), Academic Press Inc., 1991 no. 29, pp. 63-191 | DOI
[11] Relation between SIF and ERR based measures of fracture mode mixity in interface cracks, Int. J. Fract., Volume 130 (2004), pp. 557-569 | DOI
[12] Interface cracks, Int. J. Mech. Sci., Volume 35 (1993), pp. 27-37 | DOI | Zbl
[13] Solution of crack problems. The distributed dislocation technique, Solid Mechanics and Its Applications, Springer, 1996 no. 44 | DOI | Zbl | MR
[14] Interfacial and nanoscale failure, Comprehensive structural integrity. Vol. 8 (I. Milne; R. O. Ritchie; B. Karihaloo, eds.), Elsevier, 2003, pp. 1-40
[15] Analysis of interface cracks with contact in composites by 2D BEM, Fracture and damage of composites (M. Guagliano; M. H. Aliabadi, eds.) (WIT Transactions on State-of-the-art in Science and Engineering), WIT Press, 2006 no. 21, pp. 189-248
[16] Fracture mechanics, Academic Press Inc., 2012 | DOI
[17] Interface fracture and delaminations in composite materials, SpringerBriefs in Applied Sciences and Technology, Springer, 2018 | MR | DOI | Zbl
[18] Basic results for elastic fracture mechanics with frictionless contact between the crack lips, Eur. J. Mech. A Solids, Volume 19 (2000), pp. 633-647 | DOI | Zbl
[19] On the estimation of the first interpenetration point in the open model of interface cracks, Int. J. Fract., Volume 143 (2007), pp. 287-290 | DOI | Zbl
[20] Critical study of existing solutions for a penny-shaped interface crack, comparing with a new boundary element solution allowing for frictionless contact, Eng. Fract. Mech., Volume 76 (2009), pp. 533-547 | DOI
[21] The effect of interfacial friction on the buckle-driven spontaneous delamination of a compressed thin film, Int. J. Solids Struct., Volume 30 (1993), pp. 1379-1395 | DOI | Zbl
[22] An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial interfaces and in homogeneous solids, Int. J. Solids Struct., Volume 31 (1994), pp. 2407-2429 | Zbl
[23] An interface crack between elastic materials when there is dry friction, J. Appl. Math. Mech., Volume 59 (1995), pp. 273-287 | DOI | Zbl
[24] A treatment of interfacial cracks in the presence of friction, Int. J. Fract., Volume 94 (1998), pp. 371-382 | DOI
[25] A frictional interfacial crack under combined shear and compression, Compos. Sci. Technol., Volume 58 (1998), pp. 1753-1761 | DOI
[26] Interface crack tip singularity with contact and friction, C. R. Acad. Sci., Sér. IIB Mech. Phys. Astron., Volume 327 (1999), pp. 437-442 | Zbl
[27] Asymptotic study of the interfacial crack with friction, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1851-1864 | DOI | Zbl
[28] Mode-dependent toughness and the delamination of compressed thin films, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2315-2332 | DOI | Zbl
[29] Shear loaded interface crack under the influence of friction: a finite difference solution, Int. J. Numer. Methods Eng., Volume 59 (2004), pp. 1749-1780 | DOI | Zbl
[30] Crack kinking from an initially closed, ordinary or interface crack, in the presence of friction, Eng. Fract. Mech., Volume 71 (2004), pp. 289-307 | DOI
[31] The sliding interface crack with friction between elastic and rigid bodies, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1397-1421 | DOI | Zbl | MR
[32] The interface crack with Coulomb friction between two bonded dissimilar elastic media, Appl. Math., Volume 56 (2011), pp. 69-97 | DOI | MR | Zbl
[33] Evaluation of interfacial fracture toughness and friction coefficient in the single fiber fragmentation test, Procedia Eng., Volume 10 (2011), pp. 2478-2483 | DOI
[34] Effect of friction on the size of the near-tip contact zone in a penny- shaped interface crack, Key Eng. Mater., Volume 618 (2014), pp. 179-201 | DOI
[35] Asymptotic solutions in anisotropic elastic multi-material corners with frictional contact, Ph. D. Thesis, Universidad de Sevilla (Spain) (2024)
[36] Stress singularities in the generalised Comninou frictional contact model for interface cracks in anisotropic bimaterials, J. Mech. Phys. Solids, Volume 203 (2025), 106214, 29 pages | MR | Zbl | DOI
[37] Fracture in heterogeneous materials, weak and strong singularities, New advances in computational structural mechanics (P. Ladevèze; O. C. Zienkiewicz, eds.) (Studies in Applied Mechanics), Elsevier, 1992 no. 32, pp. 423-434
[38] Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., Volume 24 (1957), pp. 361-364 | DOI | Zbl
[39] A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., Volume 35 (1968), pp. 379-386 | DOI
[40] The theory of critical distances: a new perspective in fracture mechanics, Elsevier, 2007 | DOI
[41] The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Volume 7 (1962), pp. 55-129 | DOI
[42] A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Eng., Volume 177 (1999), pp. 383-399 | DOI | Zbl | MR
[43] Simulation of fiber debonding with friction in a model composite pushout test, Int. J. Solids Struct., Volume 38 (2001), pp. 8547-8562 | DOI
[44] Combining interface damage and friction in a cohesive-zone model, Int. J. Numer. Methods Eng., Volume 68 (2006), pp. 542-582 | DOI | MR
[45] Cohesive–frictional interface constitutive model, Int. J. Solids Struct., Volume 46 (2009), pp. 2680-2692 | DOI
[46] A unified model for adhesive interfaces with damage, viscosity, and friction, Eur. J. Mech. A Solids, Volume 29 (2010), pp. 496-507 | DOI | MR
[47] A cohesive element model for mixed mode loading with frictional contact capability, Int. J. Numer. Methods Eng., Volume 93 (2013), pp. 510-526 | DOI | MR
[48] An 2-D SGBEM formulation of contact models coupling the interface damage and Coulomb friction in fibre–matrix composites, Eng. Fract. Mech., Volume 168(B) (2016), pp. 76-92 | DOI
[49] Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors, Int. J. Solids Struct., Volume 198 (2020), pp. 17-30 | DOI
[50] Interface models coupling adhesion and friction, Comptes Rendus. Mécanique, Volume 339 (2011), pp. 491-501 | DOI
[51] The growth of slip surfaces in the progressive failure of over-consolidated clay, Proc. R. Soc. Lond., Ser. A, Volume 332 (1973), pp. 527-548
[52] Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, Volume 44 (1996), pp. 1129-1145 | DOI
[53] Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. A Solids, Volume 21 (2002), pp. 61-72 | DOI
[54] Finite fracture mechanics: a coupled stress and energy failure criterion, Eng. Fract. Mech., Volume 73 (2006), pp. 2021-2033 | DOI
[55] A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016), pp. 375-401 | DOI
[56] A review of the coupled criterion, J. Theor. Comput. Appl. Mech. (2024) https://jtcam.episciences.org/11072 | DOI
[57] Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion, Int. J. Solids Struct., Volume 46 (2009), pp. 1287-1304 | DOI
[58] Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, 2019 no. ASTM D7905/D7905M-19 | DOI
[59] A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests, Int. J. Fract., Volume 135 (2005) no. 3, pp. 51-72 | DOI
[60] Influences of friction, geometric nonlinearities, and fixture compliance on experimentally observed toughnesses from three and four-point bend end-notched flexure tests, J. Compos. Mater., Volume 41 (2007) no. 10, pp. 1177-1196 | DOI
[61] Numerical analysis of debond propagation in the single fibre fragmentation test, Compos. Sci. Technol., Volume 69 (2009), pp. 2514-2520 | DOI
[62] Fiber–matrix debonding in composite materials: axial loading, Modeling damage, fatigue and failure of composite materials (R. Talreja; J. Varna, eds.), Woodhead Publishing, 2016, pp. 117-141 | DOI
Cité par Sources :
Commentaires - Politique
