Comptes Rendus
Article de recherche
Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics
[Évaluation du taux de restitution d’énergie incrémental dans les fissures d’interface avec contact frottant et son application au critère couplé de la mécanique de la rupture finie]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1365-1383

A crack located in a straight and perfectly bonded interface between dissimilar isotropic linear elastic materials with a frictional contact zone adjacent to the crack tip is considered under plane strain conditions. Assuming the Coulomb friction law, the crack-tip stress singularity in such a crack is weaker than the classical square-root singularity. The main difficulty in predicting propagation of such an interface crack is that the Energy Release Rate (ERR) is zero, which is a direct consequence of this weak stress singularity at the crack tip. Therefore, the Griffith fracture criterion, which assumes infinitesimal crack advances, cannot be applied in this case. To overcome this problem a new approach to predict the propagation of an interface crack with a frictional contact zone at the crack tip, based on the Coupled stress and energy Criterion (CC) of Finite Fracture Mechanics (FFM), is proposed and analyzed. In contrast to previous approaches, the critical finite crack advance $\Delta a_\mathrm{c}$ is determined by the CC as a structural parameter given by the overall problem configuration. Two methods for calculating the incremental ERR $G_\mathrm{II} (\Delta a)$ are considered which differ in the treatment of the frictional energy dissipated along the crack advance $\Delta a$. Closed-form expressions for $G_\mathrm{II} (\Delta a)$ are derived for sufficiently large interface cracks when the most singular term of the asymptotic expansion of the elastic solution at the crack tip is dominant along the path of crack advance $\Delta a$ before the crack propagation occurs. In this case, closed-form expressions for the critical crack advance $\Delta a_\mathrm{c}$ and the critical stress intensity factor $K_\mathrm{IIc}$ are derived.

Une fissure située dans une interface droite et parfaitement adhérente entre deux matériaux isotropes linéaires élastiques dissemblables, avec une zone de contact frottant adjacente au bout de la fissure, est considérée en conditions de déformation plane. En supposant la loi de frottement de Coulomb, la singularité de contrainte à l’extrémité de la fissure est plus faible que la singularité classique en racine carrée. La principale difficulté pour prédire la propagation d’une telle fissure d’interface réside dans le fait que le taux de restitution d’énergie (TRE) est nul, ce qui découle directement de cette faible singularité de contrainte au bout de la fissure. Par conséquent, le critère de rupture de Griffith, qui suppose des avancées infinitésimales de la fissure, ne peut pas être appliqué dans ce cas. Pour surmonter ce problème, une nouvelle approche est proposée et analysée afin de prédire la propagation d’une fissure d’interface avec une zone de contact frottant à son extrémité, basée sur le critère couplé en contraintes et en énergie (CC) de la mécanique de la rupture finie (MRF). Contrairement aux approches précédentes, l’avance critique finie de la fissure $\Delta a_\mathrm{c}$ est déterminée par le critère CC comme un paramètre structurel donné par la configuration globale du problème. Deux méthodes pour calculer le TRE incrémental $G_\mathrm{II} (\Delta a)$ sont considérées, qui diffèrent dans le traitement de l’énergie de frottement dissipée au cours de l’avance de fissure $\Delta a$. Des expressions analytiques pour $G_\mathrm{II} (\Delta a)$ sont dérivées pour des fissures d’interface suffisamment longues, lorsque le terme le plus singulier du développement asymptotique de la solution élastique au voisinage de la fissure domine le long du trajet d’avance $\Delta a$, avant que la propagation ne se produise. Dans ce cas, des expressions analytiques pour l’avance critique $\Delta a_\mathrm{c}$ et le facteur d’intensité de contrainte critique $K_\mathrm{IIc}$ sont obtenues.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.319
Keywords: Interface crack, Comninou contact model, Coulomb friction law, weak singularity, energy release rate, Irwin integral, VCCT
Mots-clés : Fissure d’interface, modèle de contact de Comninou, loi de frottement de Coulomb, singularité faible, taux de restitution d’énergie, intégrale d’Irwin, VCCT

Enrique Graciani 1 ; Vladislav Mantič 1

1 Grupo de Elasticidad y Resistencia de Materiales, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_1365_0,
     author = {Enrique Graciani and Vladislav Manti\v{c}},
     title = {Evaluation of the incremental {ERR} in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1365--1383},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.319},
     language = {en},
}
TY  - JOUR
AU  - Enrique Graciani
AU  - Vladislav Mantič
TI  - Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1365
EP  - 1383
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.319
LA  - en
ID  - CRMECA_2025__353_G1_1365_0
ER  - 
%0 Journal Article
%A Enrique Graciani
%A Vladislav Mantič
%T Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics
%J Comptes Rendus. Mécanique
%D 2025
%P 1365-1383
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.319
%G en
%F CRMECA_2025__353_G1_1365_0
Enrique Graciani; Vladislav Mantič. Evaluation of the incremental ERR in interface cracks with frictional contact and its application in the coupled criterion of finite fracture mechanics. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1365-1383. doi: 10.5802/crmeca.319

[1] M. Comninou The interface crack, J. Appl. Mech., Volume 44 (1977), pp. 631-636 | Zbl | DOI

[2] M. Comninou The interface crack with friction in the contact zone, J. Appl. Mech., Volume 44 (1977), pp. 780-781 | DOI

[3] J. Dundurs; M. Comninou Some consequences of the inequality conditions in contact and crack problems, J. Elasticity, Volume 9 (1979), pp. 71-82 | DOI | Zbl

[4] M. Comninou; J. Dundurs Effect of friction on the interface crack loaded in shear, J. Elasticity, Volume 10 (1980), pp. 203-212 | DOI | Zbl | MR

[5] M. L. Williams The stress around a fault of crack in dissimilar media, Bull. Seism. Soc. Am., Volume 49 (1959), pp. 199-204 | DOI | MR

[6] A. H. England A crack between dissimilar media, J. Appl. Mech., Volume 32 (1965), pp. 400-402 | DOI

[7] J. R. Rice; G. C. Sih Plane problems of cracks in dissimilar media, J. Appl. Mech., Volume 32 (1965), pp. 418-423 | DOI

[8] B. M. Malyshev; R. L. Salganik The strength of adhesive joints using the theory of cracks, Int. J. Fract., Volume 1 (1965), pp. 114-128 | DOI

[9] J. R. Rice Elastic fracture mechanics concepts for interfacial cracks, J. Appl. Mech., Volume 55 (1988), pp. 98-103 | DOI

[10] J. W. Hutchinson; Z. Suo Mixed mode cracking in layered materials, Advances in Applied Mechanics (J. W. Hutchinson; Theodore Y. Wu, eds.) (Advances in Applied Mechanics), Academic Press Inc., 1991 no. 29, pp. 63-191 | DOI

[11] V. Mantič; F. París Relation between SIF and ERR based measures of fracture mode mixity in interface cracks, Int. J. Fract., Volume 130 (2004), pp. 557-569 | DOI

[12] D. A. Hills; J. R. Barber Interface cracks, Int. J. Mech. Sci., Volume 35 (1993), pp. 27-37 | DOI | Zbl

[13] D. A. Hills; P. A. Kelly; D. N. Dai; A. M. Korsunsky Solution of crack problems. The distributed dislocation technique, Solid Mechanics and Its Applications, Springer, 1996 no. 44 | DOI | Zbl | MR

[14] W. Gerberich; W. Yang Interfacial and nanoscale failure, Comprehensive structural integrity. Vol. 8 (I. Milne; R. O. Ritchie; B. Karihaloo, eds.), Elsevier, 2003, pp. 1-40

[15] V. Mantič; A. Blázquez; E. Correa; F. París Analysis of interface cracks with contact in composites by 2D BEM, Fracture and damage of composites (M. Guagliano; M. H. Aliabadi, eds.) (WIT Transactions on State-of-the-art in Science and Engineering), WIT Press, 2006 no. 21, pp. 189-248

[16] C. T. Sun; Z.-H. Jin Fracture mechanics, Academic Press Inc., 2012 | DOI

[17] L. Banks-Sills Interface fracture and delaminations in composite materials, SpringerBriefs in Applied Sciences and Technology, Springer, 2018 | MR | DOI | Zbl

[18] J.-B. Leblond Basic results for elastic fracture mechanics with frictionless contact between the crack lips, Eur. J. Mech. A Solids, Volume 19 (2000), pp. 633-647 | DOI | Zbl

[19] E. Graciani; V. Mantič; F. París On the estimation of the first interpenetration point in the open model of interface cracks, Int. J. Fract., Volume 143 (2007), pp. 287-290 | DOI | Zbl

[20] E. Graciani; V. Mantič; F. París Critical study of existing solutions for a penny-shaped interface crack, comparing with a new boundary element solution allowing for frictionless contact, Eng. Fract. Mech., Volume 76 (2009), pp. 533-547 | DOI

[21] R. G. Stringfellow; L. B. Freund The effect of interfacial friction on the buckle-driven spontaneous delamination of a compressed thin film, Int. J. Solids Struct., Volume 30 (1993), pp. 1379-1395 | DOI | Zbl

[22] X. Deng An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial interfaces and in homogeneous solids, Int. J. Solids Struct., Volume 31 (1994), pp. 2407-2429 | Zbl

[23] Y. A. Antipov An interface crack between elastic materials when there is dry friction, J. Appl. Math. Mech., Volume 59 (1995), pp. 273-287 | DOI | Zbl

[24] C. T. Sun; W. Qian A treatment of interfacial cracks in the presence of friction, Int. J. Fract., Volume 94 (1998), pp. 371-382 | DOI

[25] W. Qian; C. T. Sun A frictional interfacial crack under combined shear and compression, Compos. Sci. Technol., Volume 58 (1998), pp. 1753-1761 | DOI

[26] D. Leguillon Interface crack tip singularity with contact and friction, C. R. Acad. Sci., Sér. IIB Mech. Phys. Astron., Volume 327 (1999), pp. 437-442 | Zbl

[27] B. Audoly Asymptotic study of the interfacial crack with friction, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1851-1864 | DOI | Zbl

[28] B. Audoly Mode-dependent toughness and the delamination of compressed thin films, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2315-2332 | DOI | Zbl

[29] A. Dorogoy; L. Banks-Sills Shear loaded interface crack under the influence of friction: a finite difference solution, Int. J. Numer. Methods Eng., Volume 59 (2004), pp. 1749-1780 | DOI | Zbl

[30] J.-B. Leblond; J. Frelat Crack kinking from an initially closed, ordinary or interface crack, in the presence of friction, Eng. Fract. Mech., Volume 71 (2004), pp. 289-307 | DOI

[31] H. D. Bui; A. Oueslati The sliding interface crack with friction between elastic and rigid bodies, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1397-1421 | DOI | Zbl | MR

[32] H. Itou; V. A. Kovtunenko; A. Tani The interface crack with Coulomb friction between two bonded dissimilar elastic media, Appl. Math., Volume 56 (2011), pp. 69-97 | DOI | MR | Zbl

[33] E. Graciani; J. Varna; V. Mantič; A. Blázquez; F. París Evaluation of interfacial fracture toughness and friction coefficient in the single fiber fragmentation test, Procedia Eng., Volume 10 (2011), pp. 2478-2483 | DOI

[34] E. Graciani; V. Mantič; F. París Effect of friction on the size of the near-tip contact zone in a penny- shaped interface crack, Key Eng. Mater., Volume 618 (2014), pp. 179-201 | DOI

[35] M. A. Herrera-Garrido Asymptotic solutions in anisotropic elastic multi-material corners with frictional contact, Ph. D. Thesis, Universidad de Sevilla (Spain) (2024)

[36] M. A. Herrera-Garrido; V. Mantič Stress singularities in the generalised Comninou frictional contact model for interface cracks in anisotropic bimaterials, J. Mech. Phys. Solids, Volume 203 (2025), 106214, 29 pages | MR | Zbl | DOI

[37] D. Leguillon; E. Sanchez-Palencia Fracture in heterogeneous materials, weak and strong singularities, New advances in computational structural mechanics (P. Ladevèze; O. C. Zienkiewicz, eds.) (Studies in Applied Mechanics), Elsevier, 1992 no. 32, pp. 423-434

[38] G. R. Irwin Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., Volume 24 (1957), pp. 361-364 | DOI | Zbl

[39] J. R. Rice A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., Volume 35 (1968), pp. 379-386 | DOI

[40] D. Taylor The theory of critical distances: a new perspective in fracture mechanics, Elsevier, 2007 | DOI

[41] G. I. Barenblatt The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., Volume 7 (1962), pp. 55-129 | DOI

[42] M. Raous; L. Cangémi; M. Cocu A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Eng., Volume 177 (1999), pp. 383-399 | DOI | Zbl | MR

[43] G. Lin; P. H. Geubelle; N. R. Sottos Simulation of fiber debonding with friction in a model composite pushout test, Int. J. Solids Struct., Volume 38 (2001), pp. 8547-8562 | DOI

[44] G. Alfano; E. Sacco Combining interface damage and friction in a cohesive-zone model, Int. J. Numer. Methods Eng., Volume 68 (2006), pp. 542-582 | DOI | MR

[45] F. Parrinello; B. Failla; G. Borino Cohesive–frictional interface constitutive model, Int. J. Solids Struct., Volume 46 (2009), pp. 2680-2692 | DOI

[46] G. del Piero; M. Raous A unified model for adhesive interfaces with damage, viscosity, and friction, Eur. J. Mech. A Solids, Volume 29 (2010), pp. 496-507 | DOI | MR

[47] L. Snozzi; J. F. Molinari A cohesive element model for mixed mode loading with frictional contact capability, Int. J. Numer. Methods Eng., Volume 93 (2013), pp. 510-526 | DOI | MR

[48] J. Kšiňan; R. Vodička An 2-D SGBEM formulation of contact models coupling the interface damage and Coulomb friction in fibre–matrix composites, Eng. Fract. Mech., Volume 168(B) (2016), pp. 76-92 | DOI

[49] V. Venzal; S. Morel; T. Parent; F. Dubois Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors, Int. J. Solids Struct., Volume 198 (2020), pp. 17-30 | DOI

[50] M. Raous Interface models coupling adhesion and friction, Comptes Rendus. Mécanique, Volume 339 (2011), pp. 491-501 | DOI

[51] A. C. Palmer; J. R. Rice The growth of slip surfaces in the progressive failure of over-consolidated clay, Proc. R. Soc. Lond., Ser. A, Volume 332 (1973), pp. 527-548

[52] Z. Hashin Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, Volume 44 (1996), pp. 1129-1145 | DOI

[53] D. Leguillon Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. A Solids, Volume 21 (2002), pp. 61-72 | DOI

[54] P. Cornetti; N. Pugno; A. Carpinteri; D. Taylor Finite fracture mechanics: a coupled stress and energy failure criterion, Eng. Fract. Mech., Volume 73 (2006), pp. 2021-2033 | DOI

[55] P. Weissgraeber; D. Leguillon; W. Becker A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016), pp. 375-401 | DOI

[56] A. Doitrand; T. Duminy; H. Girard; X. Chen A review of the coupled criterion, J. Theor. Comput. Appl. Mech. (2024) https://jtcam.episciences.org/11072 | DOI

[57] V. Mantič Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion, Int. J. Solids Struct., Volume 46 (2009), pp. 1287-1304 | DOI

[58] ASTM International Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, 2019 no. ASTM D7905/D7905M-19 | DOI

[59] X. Sun; B. D. Davidson A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests, Int. J. Fract., Volume 135 (2005) no. 3, pp. 51-72 | DOI

[60] B. D. Davidson; X. Sun; A. J. Vinciquerra Influences of friction, geometric nonlinearities, and fixture compliance on experimentally observed toughnesses from three and four-point bend end-notched flexure tests, J. Compos. Mater., Volume 41 (2007) no. 10, pp. 1177-1196 | DOI

[61] E. Graciani; V. Mantič; F. París; J. Varna Numerical analysis of debond propagation in the single fibre fragmentation test, Compos. Sci. Technol., Volume 69 (2009), pp. 2514-2520 | DOI

[62] E. Graciani; V. Mantič; F. París; J. Varna Fiber–matrix debonding in composite materials: axial loading, Modeling damage, fatigue and failure of composite materials (R. Talreja; J. Varna, eds.), Woodhead Publishing, 2016, pp. 117-141 | DOI

Cité par Sources :

Commentaires - Politique