[Propagation des ondes de densité de l’impulsion et formation d’arcs dans l’ondulation d’une couche granulaire mince soumise à des vibrations verticales]
Experimental and theoretical investigations are made on the aspect ratio of the height $\delta $ to wavelength $\lambda $ of the undulations generated in a dry granular layer confined between two parallel vertical planes under vertical vibration of frequency $f$ and amplitude $a$. We elucidated the propagation of the density wave along the layer, which suggests one or two order smaller macroscopic elastic constant ascribed to a configuration change of the constituent particles. Our experiment also suggests the relation $\lambda \propto 1/(p-p_c) $ irrespective of the size of the container, where $p$ ($\propto fa$) is the momentum given by the external forcing, which is reminiscent of the de Broglie wave known in quantum mechanics. We further performed a numerical simulation on the onset and development of undulations using our simplified model, in which horizontal dilatation generated by mutual intrusion of particles near the bottom of the container develops to an arch formation of the granular layer. Influence of the friction of the granular material is examined.
Des études expérimentales et théoriques sont menées sur le rapport d’aspect entre la hauteur $\delta $ et la longueur d’onde $\lambda $ des ondulations générées dans une couche granulaire sèche confinée entre deux plans verticaux parallèles sous l’effet d’une vibration verticale de fréquence $f$ et d’amplitude $a$. Nous avons élucidé la propagation de l’onde de densité le long de la couche, ce qui suggère une constante élastique macroscopique inférieure d’un ou deux ordres de grandeur, attribuée à un changement de configuration des particules constitutives. Notre expérience suggère également la relation $\lambda \propto 1/(p-p_c) $, quelle que soit la taille du conteneur, où $p$ ($\propto fa$) est l’impulsion donnée par la force externe, qui rappelle l’onde de de Broglie connue en mécanique quantique. Nous avons ensuite réalisé une simulation numérique sur l’apparition et le développement des ondulations à l’aide de notre modèle simplifié, dans lequel la dilatation horizontale générée par l’intrusion mutuelle des particules près du fond du conteneur se développe pour former une arche dans la couche granulaire. L’influence du frottement du matériau granulaire est examinée.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Couche granulaire vibrée, ondulation, propagation des ondes de densité, transfert d’impulsion, onde de de Broglie
Osamu Sano 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1201_0,
author = {Osamu Sano},
title = {Density wave propagation of momentum and the formation of arches in the undulation of a vertically vibrated thin granular layer},
journal = {Comptes Rendus. M\'ecanique},
pages = {1201--1224},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.327},
language = {en},
}
TY - JOUR AU - Osamu Sano TI - Density wave propagation of momentum and the formation of arches in the undulation of a vertically vibrated thin granular layer JO - Comptes Rendus. Mécanique PY - 2025 SP - 1201 EP - 1224 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.327 LA - en ID - CRMECA_2025__353_G1_1201_0 ER -
%0 Journal Article %A Osamu Sano %T Density wave propagation of momentum and the formation of arches in the undulation of a vertically vibrated thin granular layer %J Comptes Rendus. Mécanique %D 2025 %P 1201-1224 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.327 %G en %F CRMECA_2025__353_G1_1201_0
Osamu Sano. Density wave propagation of momentum and the formation of arches in the undulation of a vertically vibrated thin granular layer. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1201-1224. doi: 10.5802/crmeca.327
[1] Subharmonic instabilities and defects in a granular layer under vertical vibrations, Europhys. Lett., Volume 8 (1989) no. 7, pp. 621-627 | DOI
[2] Mechanics of collisional motion of granular materials. Part 2. Wave propagation through vibrofluidized granular layers, J. Fluid Mech., Volume 287 (1995), pp. 349-382 | DOI
[3] Convection related phenomena in granular dynamics simulations of vibrated beds, Phys. Fluids, Volume 9 (1997) no. 12, pp. 3615-3624 | DOI
[4] Phase bubbles and spatiotemporal chaos in granular patterns, Phys. Rev. E, Volume 65 (2001), 011301, 10 pages | DOI
[5] Undulations of a thin granular layer induced by vertical vibration, J. Phys. Soc. Japan, Volume 72 (2003) no. 6, pp. 1390-1395 | DOI
[6] Experiment on vibration-induced pattern formation of a vertically thin granular layer, J. Phys. Soc. Japan, Volume 74 (2005) no. 5, pp. 1457-1463 | DOI
[7] Dilatancy, buckling, and undulations on a vertically vibrating granular layer, Phys. Rev. E, Volume 72 (2005) no. 5, 051302, 7 pages | DOI
[8] Solid‐fluid transition and the formation of ripples in vertically oscillated granular layers, AIP Conf. Proc., Volume 1227 (2010) no. 1, pp. 100-114 | DOI
[9] Aspect ratio of undulation in a vertically vibrated granular layer, Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 167-180 | DOI
[10] Transition to parametric wave patterns in a vertically oscillated granular layer, Phys. Rev. Lett., Volume 72 (1994), pp. 172-175 | DOI
[11] Hexagons, kinks, and disorder in oscillated granular layers, Phys. Rev. Lett., Volume 75 (1995), pp. 3838-3841 | DOI
[12] Standing wave patterns in shallow beds of vibrated granular material, Phys. A: Stat. Mech. Appl., Volume 236 (1997) no. 3, pp. 202-210 | DOI
[13] Patterns in 3D vertically oscillated granular layers: simulation and experiment, Phys. Rev. Lett., Volume 80 (1998), pp. 57-60 | DOI
[14] Wavelength scaling and square/stripe and grain mobility transitions in vertically oscillated granular layers, Phys. A: Stat. Mech. Appl., Volume 288 (2000) no. 1, pp. 344-362 | DOI
[15] Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996), pp. 793-796 | DOI
[16] Pattern formation on the vertically vibrated granular layer, Forma, Volume 14 (1999), pp. 321-329
[17] On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), pp. 299-340 | DOI
[18] Pattern formation in a vibrated two-dimensional granular layer, Phys. Rev. E, Volume 53 (1996), pp. 2972-2975 | DOI
[19] Spontaneous wave pattern formation in vibrated granular materials, Phys. Rev. Lett., Volume 77 (1996), pp. 4166-4169 | DOI
[20] Simulations of pattern formation in vibrated granular media, Europhys. Lett., Volume 36 (1996) no. 4, pp. 247-252 | DOI
[21] Dispersion relation of standing waves on a vertically oscillated thin granular layer, J. Phys. Soc. Japan, Volume 71 (2002), pp. 2815-2819 | DOI
[22] Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown, Phys. Rev. E, Volume 74 (2006), 011304, 9 pages | DOI
[23] Density wave as a mechanism of the formation of ripples in vertically oscillated thicker granular layer, J. Phys. Soc. Japan, Volume 80 (2011) no. 3, 034402, 7 pages | DOI
[24] Wavelength selection mechanism of ripples in vertically vibrated thicker granular layer, J. Phys. Soc. Japan, Volume 81 (2012) no. 3, 033401 | DOI
[25] Wavelength selection of ripples in a vertically vibrating dynamically thick granular layer due to density-wave refraction, Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 52-62 | DOI
[26] A tentative theory of light quanta, Philos. Mag. Lett., Volume 86 (2006) no. 7, pp. 411-423 | DOI
[27] Sables, poudres et grains, Eyrolles Sciences, Eyrolles, 1999
[28] Theory of elasticity, Course of Theoretical Physics, 7, Pergamon Press, 1986
[29] Concepts of modern physics, McGraw-Hill, 1995
Cité par Sources :
Commentaires - Politique
