Comptes Rendus
Exact free vibration of symmetric three-layered curved sandwich beams using dynamic stiffness matrix
Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 375-392.

In the present study, the governing differential equations of motion are developed by using the Hamilton principle for a three-layered curved sandwich beam with symmetric face layers. To develop the dynamic stiffness matrix, the face layers are considered to behave like Euler–Bernoulli beams although only shear deformation occurs in the core. In this research, for computing the natural frequencies of curved sandwich beams, the Wittrick–Williams algorithm is applied. After the procedure is validated by comparison with various published results, to indicate its range of application, natural frequencies of a complex frame are computed. Finally, a parametric study investigated the effect of thickness and curvature for various boundary conditions on the natural frequencies.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.45
Keywords: Free vibration, Curved sandwich beam, Wittrick–Williams algorithm, Exact dynamic stiffness matrix, Natural frequency
Daniel Dorostghoal 1; Abdolreza Zare 1; Ali Alipour Mansourkhani 1

1 Department of Civil Engineering, Yasouj University, Yasouj, Iran
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2020__348_5_375_0,
     author = {Daniel Dorostghoal and Abdolreza Zare and Ali Alipour Mansourkhani},
     title = {Exact free vibration of symmetric three-layered curved sandwich beams using~dynamic stiffness matrix},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {375--392},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {5},
     year = {2020},
     doi = {10.5802/crmeca.45},
     language = {en},
}
TY  - JOUR
AU  - Daniel Dorostghoal
AU  - Abdolreza Zare
AU  - Ali Alipour Mansourkhani
TI  - Exact free vibration of symmetric three-layered curved sandwich beams using dynamic stiffness matrix
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 375
EP  - 392
VL  - 348
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.45
LA  - en
ID  - CRMECA_2020__348_5_375_0
ER  - 
%0 Journal Article
%A Daniel Dorostghoal
%A Abdolreza Zare
%A Ali Alipour Mansourkhani
%T Exact free vibration of symmetric three-layered curved sandwich beams using dynamic stiffness matrix
%J Comptes Rendus. Mécanique
%D 2020
%P 375-392
%V 348
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmeca.45
%G en
%F CRMECA_2020__348_5_375_0
Daniel Dorostghoal; Abdolreza Zare; Ali Alipour Mansourkhani. Exact free vibration of symmetric three-layered curved sandwich beams using dynamic stiffness matrix. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 375-392. doi : 10.5802/crmeca.45. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.45/

[1] A. A. Khdeir; O. J. Aldraihem Free vibration of sandwich beams with soft core, Compos. Struct., Volume 154 (2016), pp. 179-189 | DOI

[2] R. A. Di Taranto Theory of vibratory bending for elastic and viscoelastic layered finite length beams, J. Appl. Mech., Volume 32 (1965), pp. 881-886 | DOI

[3] D. J. Mead; S. Sivakumaran The Stodola method applied to sandwich beam vibration, Proceedings of the Symposium on Numerical Methods for Vibration Problems, University of Southampton, Institute of Sound and Vibration Research, 1967, pp. 66-80

[4] D. J. Mead; S. Markus The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions, J. Sound Vib., Volume 10 (1969), pp. 163-175 | DOI | Zbl

[5] K. M. Ahmed Free vibration of curved sandwich beams by the method of finite elements, J. Sound Vib., Volume 18 (1971), pp. 61-74 | DOI | Zbl

[6] K. M. Ahmed Static and dynamic analysis of sandwich structures by the method of finite element, J. Sound Vib., Volume 18 (1971), pp. 75-91 | DOI | Zbl

[7] T. Sakiyama; H. Matsuda; C. Morita Free vibration analysis of sandwich arches with elastic or visco elastic core and various kinds of axis shape and boundary conditions, J. Sound Vib., Volume 203 (1997), pp. 505-522 | DOI

[8] S. R. Marur; T. Kant Free vibration of higher-order sandwich and composite arches, Part I: Formulation, J. Sound Vib., Volume 310 (2008), pp. 91-109 | DOI

[9] M. C. Amirani; S. M. R. Khalili; N. Nemati Free vibration analysis of sandwich beam with FG core using the element free Galerkin method, Compos. Struct., Volume 90 (2009), pp. 373-379 | DOI

[10] S. M. Hashemi; E. J. Adique Free vibration analysis of sandwich beams: A dynamic finite element, Int. J. Vehicle Struct. Sys., Volume 1 (2009), pp. 59-65

[11] S. M. Hashemi; E. J. Adique A quasi-exact dynamic finite element for free vibration analysis of sandwich beams, Appl. Compos. Mater., Volume 17 (2010), pp. 259-269 | DOI

[12] H. Arvin; M. Sadighi; A. R. Ohadi A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core, Compos. Struct., Volume 92 (2010), pp. 996-1008 | DOI

[13] S. M. R. Khalili; N. Nemati; K. Malekzadeh; A. R. Damanpack Free vibration analysis of sandwich beams using improved dynamic stiffness method, Compos. Struct., Volume 92 (2010), pp. 387-394 | DOI

[14] E. Sadeghpour; M. Sadighi; A. Ohadi Free vibration analysis of a debonded curved sandwich beam, Europ. J. Mech./A Solids, Volume 57 (2016), pp. 71-84 | DOI | MR | Zbl

[15] D. Chen; S. Kitipornchai; J. Yang Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Struct., Volume 107 (2016), pp. 39-48 | DOI

[16] J. R. Banerjee Dynamic stiffness formulation for structural elements: A general approach, Comput. Struct., Volume 63 (1997), pp. 101-103 | DOI | Zbl

[17] J. R. Banerjee Free vibration of sandwich beams using the dynamic stiffness method, Comput. Struct., Volume 81 (2003), pp. 1915-1922 | DOI

[18] J. R. Banerjee Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam, J. Sound Vib., Volume 270 (2004), pp. 379-401 | DOI | Zbl

[19] J. R. Banerjee; A. J. Sobey Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam, Int. J. Solids Struct., Volume 42 (2005), pp. 2181-2197 | DOI | Zbl

[20] W. P. Howson; A. Zare Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams, J. Sound Vib., Volume 282 (2005), pp. 753-767 | DOI

[21] J. R. Banerjee; C. W. Cheung; R. Morishima; M. Perera; J. Njuguna Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment, Int. J. Solids Struct., Volume 44 (2007), pp. 7543-7563 | DOI | Zbl

[22] J. R. Banerjee Gunawardana W.D. Dynamic stiffness matrix development and free vibration analysis of a moving beam, J. Sound Vib., Volume 303 (2007), pp. 135-143 | DOI

[23] A. R. Damanpack; S. M. R. Khalili High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method, Compos. Struct., Volume 94 (2012), pp. 1503-1514 | DOI

[24] W. H. Wittrick; F. W. Williams A general algorithm for computing natural frequencies of elastic structures, Q. J. Mech Appl. Math., Volume 24 (1971), pp. 263-284 | DOI | MR | Zbl

[25] H. Su; J. R. Banerjee; C. W. Cheung Dynamic stiffness formulation and free vibration analysis of functionally graded beams, Compos. Struct., Volume 106 (2013), pp. 854-862 | DOI

[26] A. Pagani; E. Carrera; M. Boscolo; J. R. Banerjee Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions, Compos. Struct., Volume 110 (2014), pp. 305-316 | DOI

[27] J. R. Banerjee; D. R. Jackson Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution, Comput. Struct., Volume 124 (2013), pp. 11-20 | DOI

[28] J. R. Banerjee; D. Kennedy Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects, J. Sound Vib., Volume 333 (2014), pp. 7299-7312 | DOI

[29] H. Su; J. R. Banerjee Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams, Comput. Struct., Volume 147 (2015), pp. 107-116 | DOI

[30] A. Zare; B. Rafezy; W. P. Howson Coupled bending-longitudinal vibration of three layer sandwich beam using exact dynamic stiffness matrix, J. Solid Mech., Volume 9 (2017), pp. 730-750

[31] F. W. Williams; W. H. Wittrick Exact buckling and frequency calculations surveyed, J. Struct. Eng., Volume 109 (1983), pp. 169-187 | DOI

[32] F. W. Williams Review of exact buckling and frequency calculations with optional multi-level substructuring, Comput. Struct., Volume 48 (1993), pp. 547-552 | DOI

[33] E. Adique “Free vibration analysis of sandwich beams using dynamic finite element (DFE) and FEM formulations”, MSc Thesis, Ryerson University, Canada, 2008

[34] K. M. Ahmed Dynamic analysis of sandwich beams, J. Sound Vib., Volume 21 (1972), pp. 263-276 | DOI | Zbl

Cited by Sources:

Comments - Policy


Articles of potential interest

Eigenmode sensitivity of damped sandwich structures

Komlanvi Lampoh; Isabelle Charpentier; Daya El Mostafa

C. R. Méca (2014)


A gradient method for viscoelastic behaviour identification of damped sandwich structures

Imen Elkhaldi; Isabelle Charpentier; El Mostafa Daya

C. R. Méca (2012)


Vibro-acoustic modeling and validation using viscoelastic material

Rogério Pirk; Stijn Jonckheere; Bert Pluymers; ...

C. R. Méca (2017)