Received:

Revised:

Accepted:

Published online:

DOI:
10.5802/crmeca.6

Revised:

Accepted:

Published online:

Keywords:
Orthogonal cutting process, Kinematic and kinetic cutting tool, Johnson–Cook material model, SPH method

Author's affiliations:

Mohammad Dehghani ^{1};
Alireza Shafiei ^{1};
Mohammad Mahdi Abootorabi ^{1}

License: CC-BY 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

@article{CRMECA_2020__348_2_149_0, author = {Mohammad Dehghani and Alireza Shafiei and Mohammad Mahdi Abootorabi}, title = {Analyzing orthogonal cutting process using {SPH} method by kinematic cutting tool}, journal = {Comptes Rendus. M\'ecanique}, pages = {149--174}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {2}, year = {2020}, doi = {10.5802/crmeca.6}, language = {en}, }

TY - JOUR AU - Mohammad Dehghani AU - Alireza Shafiei AU - Mohammad Mahdi Abootorabi TI - Analyzing orthogonal cutting process using SPH method by kinematic cutting tool JO - Comptes Rendus. Mécanique PY - 2020 SP - 149 EP - 174 VL - 348 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.6 LA - en ID - CRMECA_2020__348_2_149_0 ER -

%0 Journal Article %A Mohammad Dehghani %A Alireza Shafiei %A Mohammad Mahdi Abootorabi %T Analyzing orthogonal cutting process using SPH method by kinematic cutting tool %J Comptes Rendus. Mécanique %D 2020 %P 149-174 %V 348 %N 2 %I Académie des sciences, Paris %R 10.5802/crmeca.6 %G en %F CRMECA_2020__348_2_149_0

Mohammad Dehghani; Alireza Shafiei; Mohammad Mahdi Abootorabi. Analyzing orthogonal cutting process using SPH method by kinematic cutting tool. Comptes Rendus. Mécanique, Volume 348 (2020) no. 2, pp. 149-174. doi : 10.5802/crmeca.6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.6/

[1] Development of a thermomechanical cutting process model for machining process simulations, CIRP Ann. - Manuf. Technol., Volume 57 (2008), pp. 97-100 | DOI

[2] Advances in material and friction data for modelling of metal machining, CIRP Ann. - Manuf. Technol., Volume 66 (2017), pp. 731-754 | DOI

[3] Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V, Int. J. Mech. Sci., Volume 133 (2017), pp. 357-367 | DOI

[4] Stress distribution at the interface between tool and chip in machining, J. Eng. Ind.-Trans. ASME, Volume 94 (1972), pp. 683-689

[5] Metal Cutting, Elsevier, 2000

[6] Identification of a new friction model at tool-chip interface in dry orthogonal cutting, Int. J. Adv. Manuf. Technol., Volume 89 (2017), pp. 921-932 | DOI

[7] Investigation of temperature distribution in orthogonal cutting through dual-zone contact model on the rake face, Int. J. Adv. Manuf. Technol., Volume 96 (2018), pp. 81-89 | DOI

[8] Dry cutting study of an aluminium alloy (A2024-T351): a numerical and experimental approach, Int. J. Mater. Form., Volume 1 (2008), pp. 499-502 | DOI

[9] A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti – 6Al – 4V, Int. J. Mach. Tools Manuf., Volume 48 (2008), pp. 275-288 | DOI

[10] Simulation modelling practice and theory finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation, Simul. Model. Pract. Theory, Volume 18 (2010), pp. 139-156 | DOI

[11] Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting tool, Int. J. Adv. Manuf. Technol., Volume 53 (2011), pp. 1167-1181 | DOI

[12] Effects of friction conditions on the formation of dead metal zone in orthogonal cutting – a finite element study, Mach. Sci. Technol. (2018), pp. 934-952 | DOI

[13] An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting, Int. J. Adv. Manuf. Technol., Volume 73 (2014), pp. 875-885 | DOI

[14] On the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cutting, Stimul. Model. Pract. Theory, Volume 53 (2015), pp. 1-14 | DOI

[15] Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation, Finite Elem. Anal. Des., Volume 134 (2017), pp. 27-40 | DOI | Zbl

[16] Mesh influence in orthogonal cutting modelling with the Coupled Eulerian-Lagrangian (CEL) method, Eur. J. Mech. A / Solids, Volume 65 (2017), pp. 324-335 | MR | Zbl

[17] Finite element simulation and analysis of serrated chip formation during high – speed machining of AA7075 – T651 alloy, J. Manuf. Process., Volume 26 (2017), pp. 446-458 | DOI

[18] Finite element modeling of carbon fiber composite orthogonal cutting and drilling, 6th CIRP Int. Conf. High Perform. Cutting, HPC2014, Elsevier B.V., 2014, pp. 211-216

[19] Temperature measurement in orthogonai metal cutting, Int. J. Adv. Manuf. Technol., Volume 14 (1998), pp. 7-12 | DOI

[20] MPM simulations of high-speed machining of Ti6Al4V titanium alloy considering dynamic recrystallization phenomenon and thermal conductivity, Appl. Math. Modelling, Volume 56 (2018), pp. 517-538 | MR | Zbl

[21] Simulation of the orthogonal cutting of OFHC copper based on the smoothed particle hydrodynamics method, Int. J. Adv. Manuf. Technol., Volume 91 (2017), pp. 265-272 | DOI

[22] A numerical cutting model for brittle materials using smooth particle hydrodynamics, Int. J. Adv. Manuf. Technol., Volume 82 (2016), pp. 133-141 | DOI

[23] A parametric study of the modeling of orthogonal machining, Proc. ASME 2015 Int. Mech. Eng. Congr. Expo., American Society of Mechanical Engineers Digital Collection, 2015, pp. 1-10

[24] On the SPH orthogonal cutting simulation of A2024-T351 alloy, Procedia CIRP, Volume 8 (2013), pp. 152-157 | DOI

[25] (LS-DYNA Keyword User’s Manual, 2007) | DOI

[26] Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method, Int. J. Adv. Manuf. Technol., Volume 95 (2018), pp. 905-919 | DOI

[27] Smooth Particle Hydrodynamics: A Mesh Free Particle Method, World Scientific, 5 Toh Tuck Link, Singapore, 2003 (ISBN 9789812384560) | Zbl

[28] Introduction to Nonlinear Finite Element Analysis, Springer, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA, 2015

[29] Plastic deformation of A2024-T351 aluminum plate over a wide range of loading conditions, Int. J. Solids Struct., Volume 50 (2013), pp. 1781-1790 | DOI

[30] Implementation of the smoothed particle hydrodynamics method to solve plastic deformation in metals, 10th World Congr. Comput. Mech., Blucher Mechanical Engineering Proceedings, 2014

[31] Dry machining aeronautical aluminum alloy AA2024-T351: Analysis of cutting forces, chip segmentation and built-up edge formation, Metals (Basel), Volume 6 (2016), 197 pages | DOI

*Cited by Sources: *

Articles of potential interest

Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves

Filip Nikolić; Marko Čanađija

C. R. Méca (2023)

Mabrouk Ben Hamden; Jamel Bouaziz

C. R. Chim (2021)

Yann Charles; Chunping Zhang; Monique Gaspérini; ...

C. R. Méca (2020)