Comptes Rendus
Note
SPH numerical computations of wave impact onto a vertical wall with experimental comparisons
Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 117-143.

In order to assess wave impacts on coastal structures that are coupled with a marine energy device, for instance an oscillating water column (OWC), a smoothed particle hydrodynamics (SPH) software named JOSEPHINE (Cherfils et al., 2012) is used. In the present study, only a vertical wall will be considered as the front wall or draft of an OWC. In order to clearly identify impact phenomena, a breaking solitary wave will be used, so as to have a single phenomenon. And comparisons with experimental results issuing from Kimmoun et al. (2009) will be used as a matter of validation of our numerical study on solitary wave impacts.

The present paper will focus first on the accuracy and convergence of wave propagation within the SPH framework, as a continuation of the work of Antuono et al. (2011), both for a regular wave train and for a solitary wave. For regular waves, the second-order dispersion relation is well recovered, up to the third order for the higher amplitudes. For solitary waves, comparisons with analytic and experimental results are also performed.

Several types of impact are obtained similarly to those mentioned in the literature by changing the wave-maker parameters or the water depth in numerical wave flume. However, most of the effort was used for the validation of an impact case well documented in the literature. New experimental results issuing from the previous study of Kimmoun et al. were also used. Some intense and rapid impact phenomena are reproduced with our SPH single-phase numerical approach. The conclusion of this work is that a two-phase compressible approach is finally necessary to accurately compute such phenomena.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.72
Mots clés : Smoothed particle hydrodynamics, Pressure impact, Solitary wave, Weakly compressible approach, Propagation
Xuezhou Lu 1 ; Jean-Marc Cherfils 2 ; Grégory Pinon 1 ; Elie Rivoalen 1, 2 ; Olivier Kimmoun 3 ; Jérôme Brossard 1

1 Laboratoire Ondes et Milieux Complexes, Normandie Univ, UNIHAVRE, CNRS, LOMC, 76600 Le Havre, France
2 Laboratoire de Mécanique de Normandie, Normandie Univ, INSA Rouen, LMN, 76000 Rouen, France
3 Institut de Recherche sur les Phénomènes Hors Équilibre, Centrale Marseille, AMU, CNRS, IRPHE, 13000 Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_1_117_0,
     author = {Xuezhou Lu and Jean-Marc Cherfils and Gr\'egory Pinon and Elie Rivoalen and Olivier Kimmoun and J\'er\^ome Brossard},
     title = {SPH numerical computations of wave impact onto a vertical wall with experimental comparisons},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {117--143},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.72},
     language = {en},
}
TY  - JOUR
AU  - Xuezhou Lu
AU  - Jean-Marc Cherfils
AU  - Grégory Pinon
AU  - Elie Rivoalen
AU  - Olivier Kimmoun
AU  - Jérôme Brossard
TI  - SPH numerical computations of wave impact onto a vertical wall with experimental comparisons
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 117
EP  - 143
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.72
LA  - en
ID  - CRMECA_2021__349_1_117_0
ER  - 
%0 Journal Article
%A Xuezhou Lu
%A Jean-Marc Cherfils
%A Grégory Pinon
%A Elie Rivoalen
%A Olivier Kimmoun
%A Jérôme Brossard
%T SPH numerical computations of wave impact onto a vertical wall with experimental comparisons
%J Comptes Rendus. Mécanique
%D 2021
%P 117-143
%V 349
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmeca.72
%G en
%F CRMECA_2021__349_1_117_0
Xuezhou Lu; Jean-Marc Cherfils; Grégory Pinon; Elie Rivoalen; Olivier Kimmoun; Jérôme Brossard. SPH numerical computations of wave impact onto a vertical wall with experimental comparisons. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 117-143. doi : 10.5802/crmeca.72. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.72/

[1] Y. Torre-Enciso; I. Ortubia; L. L. de Aguileta; J. Marqués Mutriku wave power plant: from the thinking out to the reality, 8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden (2009)

[2] Cerema Systmes houlomoteurs bords quai, guide de conception en phase avant-projet, Collection: Connaissances., edition cerema eau, mer et fleuves, 134, rue de beauvais 60280 margny-ls-compigne Edition, 2020

[3] F. Neumann; I. L. Crom Pico owc — the frog prince of wave energy? recent autonomous operational experience and plans for an open real-sea test centre in semi-controlled environment, 9th European Wave and Tidal Energy Conference (EWTEC), Southampton, UK (2011)

[4] R. Dalrymple; B. Rogers Numerical modeling of water waves with the SPH method, Coast. Eng., Volume 53 (2006) no. 2, pp. 141-147 (coastal Hydrodynamics and Morphodynamics) | DOI

[5] A. Khayyer; H. Gotoh; S. Shao Enhanced predictions of wave impact pressure by improved incompressible SPH methods, Appl. Ocean Res., Volume 31 (2009) no. 2, pp. 111-131 | DOI

[6] X. Liu; H. Xu; S. Shao; P. Lin An improved incompressible SPH model for simulation of wavestructure interaction, Comput. Fluids, Volume 71 (2013), pp. 113-123 | DOI

[7] E. Didier; D. Neves; R. Martins; M. Neves Wave interaction with a vertical wall: SPH numerical and experimental modeling, Ocean Eng., Volume 88 (2014), pp. 330-341

[8] F. Madhi; R. W. Yeung On survivability of asymmetric wave-energy converters in extreme waves, Renew. Energy, Volume 119 (2018), pp. 891-909 | DOI

[9] S. Marrone; A. Colagrossi; V. Baudry; D. Le Touzé Extreme wave impacts on a wave energy converter: load prediction through a SPH model, Coast. Eng. J., Volume 61 (2019) no. 1, pp. 63-77 | DOI

[10] C. Altomare; A. Tafuni; J. M. Domínguez; A. J. Crespo; X. Gironella; J. Sospedra SPH simulations of real sea waves impacting a large-scale structure, J. Mar. Sci. Eng., Volume 8 (2020) no. 10, 826 | DOI

[11] M. Antuono; A. Colagrossi; S. Marrone; C. Lugni Propagation of gravity waves through an SPH scheme with numerical diffusive terms, Comput. Phys. Commun., Volume 182 (2011) no. 4, pp. 866-877 | DOI | Zbl

[12] M. Antuono; A. Colagrossi The damping of viscous gravity waves, Wave Motion, Volume 50 (2013) no. 2, pp. 197-209 | DOI | MR | Zbl

[13] P. Guilcher; G. Oger; L. Brosset; E. Jacquin; N. Grenier; D. Le Touzé Simulation of liquid impacts with a two-phase parallel SPH model, Proceedings of 20th International Offshore and Polar Engineering Conference, June 20–26, Bejing, China (2010)

[14] C. Mokrani Impact de vagues déferlantes sur un obstacle vertical. modele théorique et calcul numérique des pics de pression, Ph. D. Thesis, Université de Pau et des Pays de l’Adour (2012)

[15] C. Mokrani; S. Abadie; K. Zibouche Lien entre la forme locale de la surface libre et les pressions d’impact générées par une vague déferlante sur un ouvrage, Houille Blanche, Volume 6 (2013), pp. 53-57 | DOI

[16] A. Rafiee; D. Dutykh; F. Dias Numerical simulation of wave impact on a rigid wall using a two–phase compressible SPH method, 2013 (preprint) | arXiv

[17] R. A. Bagnold Interim report on wave-pressure research. (includes plates and photographs), J. Inst. Civil Engr., Volume 12 (1939) no. 7, pp. 202-226 | DOI

[18] A. G. de Rouville; P. Besson; P. Pétry Etat actuel des études internationales sur les efforts dus aux lames, Annales Ponts et Chaussees, Volume 108 (1938) no. 7, pp. 5-113

[19] M. Hattori; A. Arami; T. Yui Wave impact pressure on vertical walls under breaking waves of various types, Coast. Eng., Volume 22 (1994) no. 1, pp. 79-114 (special Issue Vertical Breakwaters) | DOI

[20] H. Oumeraci; P. Klammer; H. Partenscky Classification of breaking wave loads on vertical structures, J. Waterway Port Coast. Ocean Eng., Volume 119 (1993) no. 4, pp. 381-397 | DOI

[21] G. Bullock; C. Obhrai; D. Peregrine; H. Bredmose Violent breaking wave impacts. part 1: Results from large-scale regular wave tests on vertical and sloping walls, Coast. Eng., Volume 54 (2007) no. 8, pp. 602-617 | DOI

[22] B. Hofland; M. Kaminski; G. Wolters Large scale wave impacts on a vertical wall, Coast. Eng. Proc., Volume 1 (2011) no. 32 (structures–15)

[23] C. Lugni; M. Miozzi; M. Brocchini; O. Faltinsen Evolution of the air-cavity during a depressurized wave impact. part i: The kinematic flow field, Phys. Fluids, Volume 22 (doi:10.1063/1.3407664) | Zbl

[24] C. Lugni; M. Brocchini; O. M. Faltinsen Evolution of the air cavity during a depressurized wave impact. ii. the dynamic field, Phys. Fluids, Volume 22 (2010) no. 5, 056102 | Zbl

[25] J. Cherfils; G. Pinon; E. Rivoalen JOSEPHINE: A parallel SPH code for free-surface flows, Comput. Phys. Commun., Volume 183 (2012) no. 7, pp. 1468-1480 | DOI | MR

[26] A. Colagrossi; M. Landrini Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., Volume 191 (2003) no. 2, pp. 448-475 | DOI | Zbl

[27] A. Ferrari; M. Dumbser; E. F. Toro; A. Armanini A new 3d parallel SPH scheme for free surface flows, Comput. Fluids, Volume 38 (2009) no. 6, pp. 1203-1217 | DOI | MR | Zbl

[28] J.-M. Cherfils Développements et applications de la méthode SPH aux écoulements visqueux à surface libre, Ph. D. Thesis, Université du Havre (2011)

[29] M. Antuono; A. Colagrossi; S. Marrone; D. Molteni Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., Volume 181 (2010) no. 3, pp. 532-549 | DOI | MR | Zbl

[30] P. Randles; L. Libersky Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., Volume 139 (1996) no. 14, pp. 375-408 | DOI | MR | Zbl

[31] M. Antuono; A. Colagrossi; S. Marrone Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Commun., Volume 183 (2012) no. 12, pp. 2570-2580 | DOI | MR | Zbl

[32] J. Monaghan; R. Gingold Shock simulation by the particle method SPH, J. Comput. Phys., Volume 52 (1983), pp. 374-389 | DOI | Zbl

[33] A. Poupardin; G. Perret; G. Pinon; N. Bourneton; E. Rivoalen; J. Brossard Vortex kinematic around a submerged plate under water waves. Part I: Experimental analysis, Eur. J. Mech. B Fluids, Volume 34 (2012) no. 0, pp. 47-55 | DOI | Zbl

[34] J. Monaghan Simulating free surface flows with SPH, J. Comput. Phys., Volume 110 (1994) no. 2, pp. 399-406 | DOI | MR | Zbl

[35] J. Monaghan Smoothed particle hydrodynamics, Rep. Prog. Phys., Volume 68 (2005) no. 8, pp. 1703-1759 | DOI | MR | Zbl

[36] E. P. Mansard; E. R. Funke The measurement of incident and reflected spectra using a least squares method, Coast. Eng., 1980, pp. 154-172 | DOI

[37] D. G. Goring Tsunamis–the propagation of long waves onto a shelf, Ph. D. Thesis, California Institute of Technology Pasadena (1978)

[38] J. Boussinesq Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872) no. 2, pp. 55-108 | MR | Zbl

[39] J. V. Wehausen; E. V. Laitone Surface Waves, Springer, 1960 | Zbl

[40] L. Rayleigh On waves, Phil. Mag., Volume 1 (1876) no. 5, pp. 257-279 | Zbl

[41] H. Power; A. T. Chwang On reflection of a planar solitary wave at a vertical wall, Wave Motion, Volume 6 (1984) no. 2, pp. 183-195 | DOI | MR | Zbl

[42] J. Bougis Les houles périodiques simples (1993) (Technical report)

[43] J. McCowan Xxxix. on the highest wave of permanent type, Lond. Edinb. Dublin Phil. Mag. J. Sci., Volume 38 (1894) no. 233, pp. 351-358 | DOI | Zbl

[44] J. Chambarel Étude des vagues extrêmes en eaux peu profondes, Ph. D. Thesis, Université de Provence-Aix-Marseille I (2009)

[45] J. Chambarel; C. Kharif; J. Touboul Head-on collision of two solitary waves and residual falling jet formation, Nonlinear Process. Geophys., Volume 16 (2009) no. 1, pp. 111-122 | DOI

[46] J. G. Byatt-Smith An integral equation for unsteady surface waves and a comment on the Boussinesq equation, J. Fluid Mech., Volume 49 (1971) no. 04, pp. 625-633 | DOI | MR | Zbl

[47] Y. Chen; C. Kharif; J. Yang; H. Hsu; J. Touboul; J. Chambarel An experimental study of steep solitary wave reflection at a vertical wall, Eur. J. Mech. B Fluids, Volume 49 (2015), pp. 20-28 | DOI

[48] G. Oger; P. Guilcher; E. Jacquin; L. Brosset; J. Deuff; D. Le Touzé et al. Simulations of hydro-elastic impacts using a parallel SPH model, Int. J. Offshore Polar Eng., Volume 20 (2010) no. 3, pp. 181-189

[49] Y.-M. Scolan; O. Kimmoun; H. Branger; F. Remy et al. Nonlinear free surface motions close to a vertical wall. influence of a local varying bathymetry, 22nd Int. Workshop on Water Waves and Floating Bodies (2007)

[50] O. Kimmoun; Y. Scolan; Š. Malenica et al. Fluid structure interactions occuring at a flexible vertical wall impacted by a breaking wave, The Nineteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers (2009)

[51] A. Khayyer; H. Gotoh; H. Falahaty; Y. Shimizu An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions, Comput. Phys. Commun., Volume 232 (2018), pp. 139-164 | DOI | MR

[52] O. Kimmoun; A. Ratouis; L. Brosset Sloshing and scaling: experimental study in a wave canal at two different scales, Proceedings of 20th International Offshore and Polar Engineering Conference (2010), pp. 20-26

[53] X. Z. Lu; J.-M. Cherfils; G. Pinon; E. Rivoalen; J. Brossard SPH Numerical computations of wave impact onto a vertical wall, 9th International SPHERIC Workshop, Paris, France (2014)

[54] X. Lu Simulations numériques de l’action de la houle sur des ouvrages marins dans des conditions hydrodynamiques sévères, Ph. D. Thesis, Normandie Université, thèse de doctorat (2016) http://www.theses.fr/2016LEHA0012/document

[55] P. Hull; G. Mller An investigation of breaker heights, shapes and pressures, Ocean Eng., Volume 29 (2002) no. 1, pp. 59-79 | DOI

[56] C. E. Synolakis; E. N. Bernard Tsunami science before and beyond boxing day 2004, Philos. Trans. Royal Soc. A, Volume 364 (2006) no. 1845, pp. 2231-2265 | DOI | MR

[57] O. Kimmoun; Y.-M. Scolan; Z. Mravak Séminaire clarom océano-météo et hydrodynamique 2008, MINISLO, 2008

[58] D. Meringolo; A. Colagrossi; S. Marrone; F. Aristodemo On the filtering of acoustic components in weakly-compressible SPH simulations, J. Fluids Struct., Volume 70 (2017), pp. 1-23 | DOI

[59] G. Bullock; A. Crawford; P. Hewson; M. Walkden; P. Bird The influence of air and scale on wave impact pressures, Coast. Eng., Volume 42 (2001) no. 4, pp. 291-312 | DOI

[60] M. Batlle Martin; G. Pinon; J. Reveillon; O. Kimmoun Computations of soliton impact onto a vertical wall: Comparing incompressible and compressible assumption with experimental validation, Coast. Eng., Volume 164 (2021), 103817 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Interaction soliton–sable dans un canal en eau peu profonde

François Marin; Nizar Abcha; Jérôme Brossard; ...

C. R. Méca (2005)


Cliff retreat and sea bed morphology under monochromatic wave forcing: Experimental study

Bastien Caplain; Dominique Astruc; Vincent Regard; ...

C. R. Géos (2011)


A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation

Xinhua Lu; Xiaofeng Zhang; Bing Mao; ...

C. R. Méca (2016)