In order to assess wave impacts on coastal structures that are coupled with a marine energy device, for instance an oscillating water column (OWC), a smoothed particle hydrodynamics (SPH) software named JOSEPHINE (Cherfils et al., 2012) is used. In the present study, only a vertical wall will be considered as the front wall or draft of an OWC. In order to clearly identify impact phenomena, a breaking solitary wave will be used, so as to have a single phenomenon. And comparisons with experimental results issuing from Kimmoun et al. (2009) will be used as a matter of validation of our numerical study on solitary wave impacts.
The present paper will focus first on the accuracy and convergence of wave propagation within the SPH framework, as a continuation of the work of Antuono et al. (2011), both for a regular wave train and for a solitary wave. For regular waves, the second-order dispersion relation is well recovered, up to the third order for the higher amplitudes. For solitary waves, comparisons with analytic and experimental results are also performed.
Several types of impact are obtained similarly to those mentioned in the literature by changing the wave-maker parameters or the water depth in numerical wave flume. However, most of the effort was used for the validation of an impact case well documented in the literature. New experimental results issuing from the previous study of Kimmoun et al. were also used. Some intense and rapid impact phenomena are reproduced with our SPH single-phase numerical approach. The conclusion of this work is that a two-phase compressible approach is finally necessary to accurately compute such phenomena.
Revised:
Accepted:
Published online:
Xuezhou Lu 1; Jean-Marc Cherfils 2; Grégory Pinon 1; Elie Rivoalen 1, 2; Olivier Kimmoun 3; Jérôme Brossard 1

@article{CRMECA_2021__349_1_117_0, author = {Xuezhou Lu and Jean-Marc Cherfils and Gr\'egory Pinon and Elie Rivoalen and Olivier Kimmoun and J\'er\^ome Brossard}, title = {SPH numerical computations of wave impact onto a vertical wall with experimental comparisons}, journal = {Comptes Rendus. M\'ecanique}, pages = {117--143}, publisher = {Acad\'emie des sciences, Paris}, volume = {349}, number = {1}, year = {2021}, doi = {10.5802/crmeca.72}, language = {en}, }
TY - JOUR AU - Xuezhou Lu AU - Jean-Marc Cherfils AU - Grégory Pinon AU - Elie Rivoalen AU - Olivier Kimmoun AU - Jérôme Brossard TI - SPH numerical computations of wave impact onto a vertical wall with experimental comparisons JO - Comptes Rendus. Mécanique PY - 2021 SP - 117 EP - 143 VL - 349 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.72 LA - en ID - CRMECA_2021__349_1_117_0 ER -
%0 Journal Article %A Xuezhou Lu %A Jean-Marc Cherfils %A Grégory Pinon %A Elie Rivoalen %A Olivier Kimmoun %A Jérôme Brossard %T SPH numerical computations of wave impact onto a vertical wall with experimental comparisons %J Comptes Rendus. Mécanique %D 2021 %P 117-143 %V 349 %N 1 %I Académie des sciences, Paris %R 10.5802/crmeca.72 %G en %F CRMECA_2021__349_1_117_0
Xuezhou Lu; Jean-Marc Cherfils; Grégory Pinon; Elie Rivoalen; Olivier Kimmoun; Jérôme Brossard. SPH numerical computations of wave impact onto a vertical wall with experimental comparisons. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 117-143. doi : 10.5802/crmeca.72. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.72/
[1] Mutriku wave power plant: from the thinking out to the reality, 8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden (2009)
[2] Systmes houlomoteurs bords quai, guide de conception en phase avant-projet, Collection: Connaissances., edition cerema eau, mer et fleuves, 134, rue de beauvais 60280 margny-ls-compigne Edition, 2020
[3] Pico owc — the frog prince of wave energy? recent autonomous operational experience and plans for an open real-sea test centre in semi-controlled environment, 9th European Wave and Tidal Energy Conference (EWTEC), Southampton, UK (2011)
[4] Numerical modeling of water waves with the SPH method, Coast. Eng., Volume 53 (2006) no. 2, pp. 141-147 (coastal Hydrodynamics and Morphodynamics) | DOI
[5] Enhanced predictions of wave impact pressure by improved incompressible SPH methods, Appl. Ocean Res., Volume 31 (2009) no. 2, pp. 111-131 | DOI
[6] An improved incompressible SPH model for simulation of wavestructure interaction, Comput. Fluids, Volume 71 (2013), pp. 113-123 | DOI
[7] Wave interaction with a vertical wall: SPH numerical and experimental modeling, Ocean Eng., Volume 88 (2014), pp. 330-341
[8] On survivability of asymmetric wave-energy converters in extreme waves, Renew. Energy, Volume 119 (2018), pp. 891-909 | DOI
[9] Extreme wave impacts on a wave energy converter: load prediction through a SPH model, Coast. Eng. J., Volume 61 (2019) no. 1, pp. 63-77 | DOI
[10] SPH simulations of real sea waves impacting a large-scale structure, J. Mar. Sci. Eng., Volume 8 (2020) no. 10, 826 | DOI
[11] Propagation of gravity waves through an SPH scheme with numerical diffusive terms, Comput. Phys. Commun., Volume 182 (2011) no. 4, pp. 866-877 | DOI | Zbl
[12] The damping of viscous gravity waves, Wave Motion, Volume 50 (2013) no. 2, pp. 197-209 | DOI | MR | Zbl
[13] Simulation of liquid impacts with a two-phase parallel SPH model, Proceedings of 20th International Offshore and Polar Engineering Conference, June 20–26, Bejing, China (2010)
[14] Impact de vagues déferlantes sur un obstacle vertical. modele théorique et calcul numérique des pics de pression, Ph. D. Thesis, Université de Pau et des Pays de l’Adour (2012)
[15] Lien entre la forme locale de la surface libre et les pressions d’impact générées par une vague déferlante sur un ouvrage, Houille Blanche, Volume 6 (2013), pp. 53-57 | DOI
[16] Numerical simulation of wave impact on a rigid wall using a two–phase compressible SPH method, 2013 (preprint) | arXiv
[17] Interim report on wave-pressure research. (includes plates and photographs), J. Inst. Civil Engr., Volume 12 (1939) no. 7, pp. 202-226 | DOI
[18] Etat actuel des études internationales sur les efforts dus aux lames, Annales Ponts et Chaussees, Volume 108 (1938) no. 7, pp. 5-113
[19] Wave impact pressure on vertical walls under breaking waves of various types, Coast. Eng., Volume 22 (1994) no. 1, pp. 79-114 (special Issue Vertical Breakwaters) | DOI
[20] Classification of breaking wave loads on vertical structures, J. Waterway Port Coast. Ocean Eng., Volume 119 (1993) no. 4, pp. 381-397 | DOI
[21] Violent breaking wave impacts. part 1: Results from large-scale regular wave tests on vertical and sloping walls, Coast. Eng., Volume 54 (2007) no. 8, pp. 602-617 | DOI
[22] Large scale wave impacts on a vertical wall, Coast. Eng. Proc., Volume 1 (2011) no. 32 (structures–15)
[23] Evolution of the air-cavity during a depressurized wave impact. part i: The kinematic flow field, Phys. Fluids, Volume 22 (doi:10.1063/1.3407664) | Zbl
[24] Evolution of the air cavity during a depressurized wave impact. ii. the dynamic field, Phys. Fluids, Volume 22 (2010) no. 5, 056102 | Zbl
[25] JOSEPHINE: A parallel SPH code for free-surface flows, Comput. Phys. Commun., Volume 183 (2012) no. 7, pp. 1468-1480 | DOI | MR
[26] Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., Volume 191 (2003) no. 2, pp. 448-475 | DOI | Zbl
[27] A new 3d parallel SPH scheme for free surface flows, Comput. Fluids, Volume 38 (2009) no. 6, pp. 1203-1217 | DOI | MR | Zbl
[28] Développements et applications de la méthode SPH aux écoulements visqueux à surface libre, Ph. D. Thesis, Université du Havre (2011)
[29] Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun., Volume 181 (2010) no. 3, pp. 532-549 | DOI | MR | Zbl
[30] Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Meth. Appl. Mech. Eng., Volume 139 (1996) no. 14, pp. 375-408 | DOI | MR | Zbl
[31] Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Commun., Volume 183 (2012) no. 12, pp. 2570-2580 | DOI | MR | Zbl
[32] Shock simulation by the particle method SPH, J. Comput. Phys., Volume 52 (1983), pp. 374-389 | DOI | Zbl
[33] Vortex kinematic around a submerged plate under water waves. Part I: Experimental analysis, Eur. J. Mech. B Fluids, Volume 34 (2012) no. 0, pp. 47-55 | DOI | Zbl
[34] Simulating free surface flows with SPH, J. Comput. Phys., Volume 110 (1994) no. 2, pp. 399-406 | DOI | MR | Zbl
[35] Smoothed particle hydrodynamics, Rep. Prog. Phys., Volume 68 (2005) no. 8, pp. 1703-1759 | DOI | MR | Zbl
[36] The measurement of incident and reflected spectra using a least squares method, Coast. Eng., 1980, pp. 154-172 | DOI
[37] Tsunamis–the propagation of long waves onto a shelf, Ph. D. Thesis, California Institute of Technology Pasadena (1978)
[38] Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Volume 17 (1872) no. 2, pp. 55-108 | MR | Zbl
[39] Surface Waves, Springer, 1960 | Zbl
[40] On waves, Phil. Mag., Volume 1 (1876) no. 5, pp. 257-279 | Zbl
[41] On reflection of a planar solitary wave at a vertical wall, Wave Motion, Volume 6 (1984) no. 2, pp. 183-195 | DOI | MR | Zbl
[42] Les houles périodiques simples (1993) (Technical report)
[43] Xxxix. on the highest wave of permanent type, Lond. Edinb. Dublin Phil. Mag. J. Sci., Volume 38 (1894) no. 233, pp. 351-358 | DOI | Zbl
[44] Étude des vagues extrêmes en eaux peu profondes, Ph. D. Thesis, Université de Provence-Aix-Marseille I (2009)
[45] Head-on collision of two solitary waves and residual falling jet formation, Nonlinear Process. Geophys., Volume 16 (2009) no. 1, pp. 111-122 | DOI
[46] An integral equation for unsteady surface waves and a comment on the Boussinesq equation, J. Fluid Mech., Volume 49 (1971) no. 04, pp. 625-633 | DOI | MR | Zbl
[47] An experimental study of steep solitary wave reflection at a vertical wall, Eur. J. Mech. B Fluids, Volume 49 (2015), pp. 20-28 | DOI
[48] et al. Simulations of hydro-elastic impacts using a parallel SPH model, Int. J. Offshore Polar Eng., Volume 20 (2010) no. 3, pp. 181-189
[49] et al. Nonlinear free surface motions close to a vertical wall. influence of a local varying bathymetry, 22nd Int. Workshop on Water Waves and Floating Bodies (2007)
[50] et al. Fluid structure interactions occuring at a flexible vertical wall impacted by a breaking wave, The Nineteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers (2009)
[51] An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions, Comput. Phys. Commun., Volume 232 (2018), pp. 139-164 | DOI | MR
[52] Sloshing and scaling: experimental study in a wave canal at two different scales, Proceedings of 20th International Offshore and Polar Engineering Conference (2010), pp. 20-26
[53] SPH Numerical computations of wave impact onto a vertical wall, 9th International SPHERIC Workshop, Paris, France (2014)
[54] Simulations numériques de l’action de la houle sur des ouvrages marins dans des conditions hydrodynamiques sévères, Ph. D. Thesis, Normandie Université, thèse de doctorat (2016) http://www.theses.fr/2016LEHA0012/document
[55] An investigation of breaker heights, shapes and pressures, Ocean Eng., Volume 29 (2002) no. 1, pp. 59-79 | DOI
[56] Tsunami science before and beyond boxing day 2004, Philos. Trans. Royal Soc. A, Volume 364 (2006) no. 1845, pp. 2231-2265 | DOI | MR
[57] Séminaire clarom océano-météo et hydrodynamique 2008, MINISLO, 2008
[58] On the filtering of acoustic components in weakly-compressible SPH simulations, J. Fluids Struct., Volume 70 (2017), pp. 1-23 | DOI
[59] The influence of air and scale on wave impact pressures, Coast. Eng., Volume 42 (2001) no. 4, pp. 291-312 | DOI
[60] Computations of soliton impact onto a vertical wall: Comparing incompressible and compressible assumption with experimental validation, Coast. Eng., Volume 164 (2021), 103817 | DOI
Cited by Sources:
Comments - Policy