Thirty-one bush fire experiments are used to assess the predictive capability of a bush fire spread model. This model has been optimized by a deterministic method of parameter calibration. The experiments used were carried out each year from 2014 to 2017 in a forest–savannah transition zone. The characteristics of the herbaceous stratum as well as the meteorological and topographical data are well documented. The characteristics of the fire have also been measured to understand the behaviour of the fire in a Guinean savannah. The predicted rate of fire spread and fire contours gave results in good accordance with those of the experiments.
Trente et une (31) expériences de feu de brousse ont été utilisées pour évaluer la capacité prédictive d’un modèle de propagation de feux de brousse. Ce modèle a été optimisé par une méthode déterministe de calibrage des paramètres. Les expériences utilisées ont été réalisées chaque année de 2014 à 2017 dans une zone de transition forêt - savane. Les caractéristiques de la strate herbacée ainsi que les données météorologiques et topographiques ont été bien documentées. Les caractéristiques du feu ont été également mesurées pour comprendre le comportement du feu dans une savane Guinéenne. Les vitesses de propagation et les contours de feux prédits ont donné des résultats en bon accord avec ceux des expériences.
Revised:
Accepted:
Published online:
A. David V. Brou 1; Aya Brigitte N’Dri 2

@article{CRMECA_2021__349_1_43_0, author = {A. David V. Brou and Aya Brigitte N{\textquoteright}Dri}, title = {Evaluation of an optimized bush fire propagation model with large-scale fire experiments}, journal = {Comptes Rendus. M\'ecanique}, pages = {43--53}, publisher = {Acad\'emie des sciences, Paris}, volume = {349}, number = {1}, year = {2021}, doi = {10.5802/crmeca.77}, language = {en}, }
TY - JOUR AU - A. David V. Brou AU - Aya Brigitte N’Dri TI - Evaluation of an optimized bush fire propagation model with large-scale fire experiments JO - Comptes Rendus. Mécanique PY - 2021 SP - 43 EP - 53 VL - 349 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.77 LA - en ID - CRMECA_2021__349_1_43_0 ER -
A. David V. Brou; Aya Brigitte N’Dri. Evaluation of an optimized bush fire propagation model with large-scale fire experiments. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 43-53. doi : 10.5802/crmeca.77. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.77/
[1] Fire : 2019-08-25 and 2019-08-26 (NASA. August 25, 2019. Available at: https://firms.modaps.eosdis.nasa.gov/map/#z:3;c:28.1,-17.3;t:adv-points;d:2019-08-25..2019-08-26;l:firms_noaa20-viirs,firms_viirs,firms_modis_a,firms_modis_t. Accessed on March 6, 2020)
[2] The fire environment concept, USDA For. Serv., Pac. Southwest For. and Range Exp. Station., 1972 (15 p)
[3] Time aware genetic algorithm fire propagation prediction: exploiting multi-core platforms, Concurr. Comput., Volume 29 (2017), pp. 1-18
[4] A data-driven fire spread simulator: Validation in Vall-llobrega’s fire, Front. Mech. Eng., Volume 5 (2019), pp. 1-11 | DOI
[5] A comparative study of parameter estimation and state estimation approaches in data - driven wildfire spread modeling, VII International Conference on Forest Fire Research, Coimbra (2014), pp. 1-12
[6] Data resolution effects on a coupled data driven system for forest fire propagation prediction, Procedia Comput. Sci., Volume 108 (2017), pp. 1562-1571 | DOI
[7] Computational Optimization and Applications in Engineering and Industry, 356, Springer, Berlin, Heidelberg, 2011, pp. 1-11
[8] Detreministic optimization techniques to calibrate parameters in a wildland fire propagation model, C. R. Méc., Volume 348 (2020), pp. 759-768
[9] Un Réseau de Petit Monde local à sites pondérés pour les feux de forêts, C. R. Phys., Volume 6 (2005), pp. 151-157 | DOI
[10] Influence des brandons sur la propagation d’un feu de forêt, C. R. Phys., Volume 6 (2005), pp. 1153-1160 | DOI
[11] Efficacité des coupures de combustible dans la prévention des feux de forêts, C. R. Phys., Volume 8 (2007), pp. 462-468 | DOI
[12] Modeling forest fire spread and spotting process with small world networks, Combust. Flame, Volume 149 (2007), pp. 63-78 | DOI
[13] Simulating wildfire patterns using a small - world network model, Ecol. Model., Volume 221 (2010), pp. 1463-1471 | DOI
[14] Modeling wildland fire propagation using a semi - physical network model, Case Stud. Fire Saf., Volume 4 (2015), pp. 11-18 | DOI
[15] Portail Officiel du Gouvernement de Côte d’Ivoire (Available at: http://www.gouv.ci/_actualite-article.php?d=3&recordID=8535. Accessed on April 23, 2020)
[16] Infrared radiative properties of vegetation involved in forest fires, Fire Saf. J., Volume 44 (2009), pp. 88-95 | DOI
[17] Experiment study in the infrared of the radiative properties of pine needles, Exp. Therm. Fluid Sci., Volume 34 (2010), pp. 893-899 | DOI
[18] Heat and Mass Transfer, Addison-Wesley, Reading, MA, 1988, 718 pages (Ed., 2, illustrated, reprinted)
[19] Modeling thermally thick pyrolysis of wood, Biomass Bioenerg., Volume 22 (2002), pp. 41-53
[20] Heat transfert and kinetics in the pyrolysis of shrinking biomass particle, Chem. Eng. Sci., Volume 59 (2004), pp. 1999-2012 | DOI
[21] Modeling of beech wood pellet pyrolisis under concentrated solar radiation, Renew. Energ., Volume 99 (2006), pp. 721-729
[22] Analysis and modelling of wood pyrolysis, Chem. Eng. Sci., Volume 66 (2011), pp. 650-660 | DOI
[23] Fire spread upslope: Numerical simulation of laboratory esperiments, Fire Saf. J., Volume 108 (2019), 102844 | DOI
[24] http://www.scilab.org (Addressed 04/11/2019)
[25] Season affects fire behavior in annually burned humid savanna of West Africa, Fire Ecol., Volume 14 (2018), pp. 1-11 | DOI
Cited by Sources:
Comments - Policy