Comptes Rendus
Note
Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 225-240.

Some nondestructive techniques of the Structural Health Monitoring (SHM) have improved their analysis in the past decades. Among them, the electromechanical impedance-based SHM technique (EMI-SHM) has been tested in several fields and associated to different statistical methodologies. Considering the nature of the spatial variation of the damage metric data along structures, herein is proposed the use of the indicator kriging method for predicting the existence of a known damage located in the center of an aluminum plate. Maps showing the probability of the damage metric to fall in several value ranges were capable of outlining the areas affected by the damage and predict its location. Comparisons between scenarios with different spacing between PZT patches showed a reduction in the reliability of the model with the increasing of such spacing. Also, for the structure under study, it demonstrates that it is not possible to obtain results by the methodology for distance between sensors/actuators greater than 16.67 cm. However, the results show that this approach can be a viable alternative for using damage metrics to map regions affected by damage and its location.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.81
Mots clés : Control of mechanical systems, Indicator kriging, Impedance-based SHM, Damage detection technique, Semivariogram
Daniel Resende Gonçalves 1 ; José dos Reis Vieira de Moura Jr. 1 ; Paulo Elias Carneiro Pereira 2 ; Marcos Vinícius Agapito Mendes 2 ; Henrique Senna Diniz-Pinto 2

1 Mathematics and Technology Institute, Federal University of Catalão, 1120 Dr. Lamartine Pinto de Avelar Av., Catalão, 75704-020, Brazil
2 Engineering School, Federal University of Catalão, 1120 Dr. Lamartine Pinto de Avelar Av., Catalão, 75704-020, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_2_225_0,
     author = {Daniel Resende Gon\c{c}alves and Jos\'e dos Reis Vieira de Moura Jr. and Paulo Elias Carneiro Pereira and Marcos Vin{\'\i}cius Agapito Mendes and Henrique Senna Diniz-Pinto},
     title = {Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {225--240},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.81},
     language = {en},
}
TY  - JOUR
AU  - Daniel Resende Gonçalves
AU  - José dos Reis Vieira de Moura Jr.
AU  - Paulo Elias Carneiro Pereira
AU  - Marcos Vinícius Agapito Mendes
AU  - Henrique Senna Diniz-Pinto
TI  - Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 225
EP  - 240
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.81
LA  - en
ID  - CRMECA_2021__349_2_225_0
ER  - 
%0 Journal Article
%A Daniel Resende Gonçalves
%A José dos Reis Vieira de Moura Jr.
%A Paulo Elias Carneiro Pereira
%A Marcos Vinícius Agapito Mendes
%A Henrique Senna Diniz-Pinto
%T Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring
%J Comptes Rendus. Mécanique
%D 2021
%P 225-240
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.81
%G en
%F CRMECA_2021__349_2_225_0
Daniel Resende Gonçalves; José dos Reis Vieira de Moura Jr.; Paulo Elias Carneiro Pereira; Marcos Vinícius Agapito Mendes; Henrique Senna Diniz-Pinto. Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 225-240. doi : 10.5802/crmeca.81. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.81/

[1] C. Boller Structural health monitoring—an introduction and definitions, Encyclopedia of Structural Health Monitoring (C. Boller; F.-K. Chang; Y. Fujino, eds.), John Wiley & Sons, Ltd., Houston, 2009, pp. 1-23

[2] R. A. Antunes; N. E. Cortez; B. M. Gianesini; J. Vieira Filho Modeling, simulation, experimentation, and compensation of temperature effect in impedance-based SHM systems applied to steel pipes, Sensors, Volume 19 (2019), pp. 1-23

[3] A. Martowicz; A. Sendecki; M. Salamon; M. Rosiek; T. Uhl Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection, Nondestruct. Test. Eval., Volume 31 (2016), pp. 17-44 | DOI

[4] I. I. C. Maruo; G. de Faria Giachero; V. Steffen Jr.; R. M. Finzi Neto Electromechanical impedance—based structural health monitoring instrumentation system applied to aircraft structures and employing a multiplexed sensor array, J. Aerosp. Technol. Manage., Volume 7 (2015) no. 3, pp. 294-306 | DOI

[5] P. Selva; O. Cherrier; V. Budinger; F. Lachaud; J. Morlier Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks, Eng. Struct., Volume 56 (2013), pp. 794-804 | DOI

[6] H. Boukabache; C. Escriba; S. Zedek; D. Medale; S. Rolet; J. Y. Fourniols System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring, Sensors, Volume 12 (2012) no. 10, pp. 13617-13635 | DOI

[7] L. V. Palomino; J. R. V. Moura Jr.; K. M. Tsuruta; D. A. Rade; V. Steffen Jr. Impedance-based health monitoring and mechanical testing of structures, Smart Struct. Syst., Volume 7 (2011) no. 1, pp. 15-25 | DOI

[8] J. R. V. Moura Jr.; V. Steffen Jr. Impedance-based health monitoring for aeronautic structures using statistical meta-modeling, J. Intell. Mater. Syst. Struct., Volume 17 (2006) no. 11, pp. 1023-1036 | DOI

[9] C. Zhang; Q. Yan; G. P. Panda; W. Wu; G. Song; C. Vipulanandan Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method, Constr. Build. Mater., Volume 256 no. 2020, pp. 119395-119410

[10] Y.-F. Su; G. Han; A. Amran; T. Nantung; N. Lu Instantaneous monitoring the early age properties of cementitious materials using PZT-based electromechanical impedance (EMI) technique, Constr. Build. Mater., Volume 136 no. 2019, pp. 340-347

[11] W. W. Peng Liu; Y. Chen; X. Feng; L. Miao Concrete damage diagnosis using electromechanical impedance technique, Constr. Build. Mater., Volume 136 (2017), pp. 450-455

[12] H. Kim; X. Liu; E. Ahn; M. Shin; S. W. Shin; S.-H. Sim Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique, NDT&E Int., Volume 104 (2019), pp. 90-97 | DOI

[13] Y. Yang; B. S. Divsholi Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring, Sensors, Volume 10 (2010) no. 12, pp. 11644-11661 | DOI

[14] Y. Yang; B. S. Divsholi; C. K. Soh A reusable PZT transducer for monitoring initial hydration and structural health of concrete, Sensors, Volume 10 (2010) no. 5, pp. 5193-5208 | DOI

[15] H. Kima; X. Liub; E. Ahna; M. Shina; S. W. Shinc; S.-H. Sima Performance assessment method for crack repair in concrete using PZT-based electromechanical impedance technique, NDT&E Int., Volume 104 (2019), pp. 90-97 | DOI

[16] S. Na; H. K. Lee Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique, Compos. Sci. Technol., Volume 88 (2013), pp. 62-68 | DOI

[17] J. Zhu; Y. Wang; X. Qing Modified electromechanical impedance-based disbond monitoring for honeycomb sandwich composite structure, Compos. Struct., Volume 217 (2019), pp. 175-185 | DOI

[18] D. Ai; H. Zhu; H. Luo; J. Yang An effective electromechanical impedance technique for steel structural health monitoring, Constr. Build. Mater., Volume 73 (2014), pp. 97-104 | DOI

[19] H. A. Tinoco; L. Robledo-Callejas; D. J. Marulanda; A. L. Serpa Damage detection in plates using the electromechanical impedance technique based on decoupled measurements of piezoelectric transducers, J. Sound Vib., Volume 384 (2016), pp. 146-162 | DOI

[20] S. Na; H. Lee Steel wire electromechanical impedance method using a piezoelectric material for composite structures with complex surfaces, Compos. Struct., Volume 98 (2013), pp. 79-84 | DOI

[21] J. Zhu; X. Qing; X. Liu; Y. Wang Electromechanical impedance-based damage localization with novel signatures extraction methodology and modified probability-weighted algorithm, Mech. Syst. Signal Process., Volume 146 (2021), pp. 210-220

[22] C. Kralovec; M. Schagerl; M. Mayr Localization of damages by model-based evaluation of electro-mechanical impedance measurements, Eur. Workshop Struct. Health Monit., Volume 9 (2018), pp. 1-12

[23] P. S. Olivier Cherrier; V. Pommier-Budinger; F. Lachaud; J. Morlier Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures, Struct. Health Monit., Volume 12 (2013), pp. 311-324

[24] D. R. Gonçalves; J. R. V. Moura Jr.; P. E. C. Pereira Monitoramento de integridade estrutural baseado em impedância eletromecânica utilizando o método de krigagem ordinária, HOLOS, Volume 36 (2020) no. 2, pp. 1-17 | DOI

[25] B. Lin; V. Giurgiutiu Modeling and testing of PZT and PVDF piezoelectric wafer active sensors, Smart Mater. Struct., Volume 15 (2006) no. 4, pp. 1085-1093 | DOI

[26] G. Park; H. Sohn; C. R. Farrar; D. J. Inman Overview of piezoelectric impedance-based health monitoring and path forward, Shock Vib. Dig., Volume 35 (2003) no. 6, pp. 451-463 | DOI

[27] C. Liang; F. P. Sun; C. A. Rogers Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer, J. Intell. Mater. Syst. Struct., Volume 5 (1994) no. 1, pp. 12-20 | DOI

[28] S. Bhalla; C. K. Soh Electro-Mechanical Impedance Technique, Smart Materials in Structural Health Monitoring, Control and Biomechanics (C.-K. Soh; Y. Yang; S. Bhalla, eds.) (Advanced Topics in Science and Technology in China), Springer+Business Media, 2012, pp. 17-51 | DOI

[29] F. G. Baptista; J. Vieira Filho Optimal frequency range selection for PZT transducers in impedance-based SHM systems, IEEE Sens. J., Volume 10 (2010) no. 8, pp. 1297-1303 | DOI

[30] A. N. Zagrai; V. Giurgiutiu Electromechanical impedance modeling, Encyclopedia of Structural Health Monitoring (C. Boller; F.-K. Chang; Y. Fujino, eds.), John Wiley & Sons Ltd., Houston, 2009, pp. 71-89

[31] D. M. Peairs; P. A. Tarazaga; D. J. Inman Frequency range selection for impedance-based structural health monitoring, J. Vib. Acoust., Volume 129 (2007) no. 6, pp. 701-709 | DOI

[32] D. M. Peairs; D. J. Inman; G. Park Circuit analysis of impedance-based health monitoring of beams using spectral elements, Struct. Health Monit., Volume 6 (2007) no. 1, pp. 81-94 | DOI

[33] V. Giurgiutiu Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2, Academic Press, Waltham, MA, 2014 (1024 pages)

[34] V. Giurgiutiu; C. A. Rogers Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE, Smart Structures and Materials 1998: Smart Structures and Integrated Systems (M. E. Regelbrugge, ed.), Volume 3329, International Society for Optics and Photonics, SPIE, Bellingham, WA, 1998, pp. 536-547 | DOI

[35] G. Matheron Principles of geostatistics, Econom. Geol., Volume 58 (1963), pp. 1246-1266 | DOI

[36] G. Matheron Kriging, or polynomial interpolation procedures? A contribution to polemics in mathematical geology, Can. Min. Metall. Trans., Volume 70 (1967), pp. 240-244

[37] G. Matheron The theory of regionalized variables and its applications, Les cahiers du Centre de Morphologie Mathématique de Fontainebleau, Volume 05, École Nationale Supérieure des Mines de Paris, Paris, France, 1971

[38] J.-P. Chilès; P. Delfiner Geostatistics: Modeling Spatial Uncertainty, John Wiley & Sons, Hoboken, USA, 2012 | Zbl

[39] M. B. Revuelta Mineral resource evaluation, Mineral Resources: From Exploration to Sustainability Assessment (Springer Textbooks in Earth Sciences, Geography and Environment), Springer International Publishing AG, Cham, Switzerland, 2018, pp. 223-309 | DOI

[40] A. G. Journel; C. J. Huijbregts Mining Geostatistics, Academic Press Limited, London, UK, 1978

[41] A. J. Sinclair; G. H. Blackwell Spatial (structural) analysis: an introduction to semivariograms, Applied Mineral Inventory Estimation, Cambridge University Press, Cambridge, UK, 2004, pp. 192-214

[42] M. Abzalov Variography, Applied Mining Geology, Modern Approaches in Solid Earth Sciences, Volume 12, Springer International Publishing AG, Cham, Switzerland, 2016, pp. 239-262 | DOI

[43] M. E. Rossi; C. V. Deutsch Mineral Resource Estimation, Springer Science+Business Media, Dordrecht, Netherlands, 2014

[44] P. K. Kitanidis Intrinsic model, Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press, Cambridge, UK, 1997, pp. 41-82 | DOI

[45] W. A. Hustrulid; M. Kuchta; R. K. Martin Orebody description, Open Pit Mine Planning & Design, Volume 1, CRC Press, London, UK, 2013, pp. 186-289

[46] J. K. Yamamoto; P. M. B. Landim Estimativas Geoestatísticas, Geoestatística: Conceitos e Aplicações, Oficina de Textos, São Paulo, Brazil, 2013, pp. 55-119

[47] E. H. Isaaks; R. M. Srivastava Ordinary kriging, Applied Geostatistics, Oxford University Press, New York, USA, 1989, pp. 278-322

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

SGS method applied to damage location and uncertainty modeling for sensor grid in the ISHM

Paulo Elias Carneiro Pereira; Stanley Washington Ferreira de Rezende; José dos Reis Vieira de Moura Júnior; ...

C. R. Méca (2024)


Damage detection on hollow cylinders by Electro-Mechanical Impedance method: Experiments and Finite Element Modeling

Seyed Reza Hamzeloo; Mahnaz Shamshirsaz; Seyed Mehdi Rezaei

C. R. Méca (2012)


The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China

Pingguo Yang; Renzhao Mao; Hongbo Shao; ...

C. R. Biol (2009)