Comptes Rendus
Note
Impact of the fracture contact area on macro-dispersion in single rough fractures
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 203-224.

In the scientific literature, the study of the impact of the fracture contact area on macro-dispersion in single rough fractures is still an open question. In this work, we study numerically the combined effects of the fracture roughness and the fracture contact area on the non-Fickian transport in single rough fractures. In particular, we quantify the contribution of the fracture contact area on macro-dispersion. These objectives are achieved by estimating the macro-dispersion coefficient from Monte Carlo parallel numerical simulations in pure advection and advection–diffusion cases. When the fractional void S O is equal to 1 (i.e., for σ lnb <0.25), the Monte Carlo simulations show that macro-dispersion results of two contributions, dispersion caused by the heterogeneity of fracture apertures that induces a channelization of flow paths and molecular diffusion, as shown by the analytical solution proposed by Gelhar in 1993. When the fraction void S O is different from 1 (i.e., for σ lnb >0.25), a third mechanism plays in macro-dispersion. The presence of contacts or obstacles causes a disruption of flow paths. This mechanism is identical to that induced by the fracture roughness with a lower amplitude. Its amplitude is the function of the fractional void S O .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.82
Mots clés : Single rough fractures, Fracture contact area, Macro-dispersion, Non-Fickian transport, Monte Carlo simulations, RW model
Anthony Beaudoin 1 ; Mohamad Farhat 1

1 Institut Pprime, SP2MI - Téléport 2, boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_2_203_0,
     author = {Anthony Beaudoin and Mohamad Farhat},
     title = {Impact of the fracture contact area on macro-dispersion in single rough fractures},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {203--224},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.82},
     language = {en},
}
TY  - JOUR
AU  - Anthony Beaudoin
AU  - Mohamad Farhat
TI  - Impact of the fracture contact area on macro-dispersion in single rough fractures
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 203
EP  - 224
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.82
LA  - en
ID  - CRMECA_2021__349_2_203_0
ER  - 
%0 Journal Article
%A Anthony Beaudoin
%A Mohamad Farhat
%T Impact of the fracture contact area on macro-dispersion in single rough fractures
%J Comptes Rendus. Mécanique
%D 2021
%P 203-224
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.82
%G en
%F CRMECA_2021__349_2_203_0
Anthony Beaudoin; Mohamad Farhat. Impact of the fracture contact area on macro-dispersion in single rough fractures. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 203-224. doi : 10.5802/crmeca.82. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.82/

[1] R. W. Zimmerman; I. Main Hydromechanical behavior of fractured rocks, Mechanics of Fluid-saturated Rocks (Y. Gueguen; M. Bouteca, eds.), Elsevior, London, 2004, pp. 363-421 | DOI

[2] Q. Lei; J. P. Latham; C. F. Tsang The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks, Comput. Geotech., Volume 85 (2017), pp. 151-176 | DOI

[3] Z. Dou; B. Sleep; H. Zhan; Z. Zhou; J. Wang Multiscale roughness influence on conservative solute transport in self-affine fracture, Int. J. Heat Mass Trans., Volume 133 (2019), pp. 606-618 | DOI

[4] Z. Yang; D. Li; S. Xue; R. Hu; Y. F. Chen Effect of aperture field anisotropy on two-phase in rough fractures, Adv. Water Res., Volume 132 (2019), 103390 | DOI

[5] W. A. Illman Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks, Groundwater, Volume 52 (2014), pp. 659-684 | DOI

[6] L. Wang; M. Bayani Cardenas An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation, J. Contam. Hydrol., Volume 179 (2015), pp. 47-54 | DOI

[7] L. Wang; M. Bayani Cardenas Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in) sensitivity and roughness dependence, J. Contam. Hydrol., Volume 198 (2017), pp. 1-10 | DOI

[8] S. P. Neuman; D. M. Tartakovsky Perspective on theories of non-Fickian transport in heterogeneous media, Adv. Water Res., Volume 32–5 (2009), pp. 670-680 | DOI

[9] Q. Zheng; S. Dickson; Y. Guo Influence of aperture field heterogeneity and anisotropy on dispersion regimes and dispersivity in single fractures, J. Geophys. Res., Volume 114 (2009) no. B3, p. 12 | DOI

[10] L. Wang; M. B. Cardenas Non-Fickian transport through two-dimensional rough fractures: assessment and prediction, Water Resour. Res., Volume 50 (2014) no. 2, pp. 871-884 | DOI

[11] Y. Ding; X. Meng; D. Yang Numerical simulation of polydisperse dense particles transport in a random-orientated fracture with spatially variable apertures, Colloids Surf. A: Physicochem. Eng. Asp., Volume 610 (2020), 125729

[12] Y. Hu; W. Xu; L. Zhan; Z. Ye; Y. Chen Non-Fickian solute transport in rough-walled fractures: the effect of contact area, Water, Volume 12 (2020) no. 7, pp. 2049-2074 | DOI

[13] S. C. James; C. V. Chrysikopoulos Transport of polydisperse colloid suspensions in a single fracture, Water Resour. Res., Volume 35 (1999) no. 3, pp. 707-718 | DOI

[14] S. C. James; C. V. Chrysikopoulos Transport of polydisperse colloids in a saturated fracture with spatially variable aperture, Water Resour. Res., Volume 36 (2000) no. 6, pp. 1457-1465 | DOI | Zbl

[15] S. C. James; C. V. Chrysikopoulos An efficient particle tracking equation with specified spatial step for the solution of the diffusion equation, Chem. Eng. Sci., Volume 56 (2001) no. 23, pp. 6535-6543 | DOI

[16] P. W. Reimus; S. C. James Determining the random time step in a constant spatial step particle tracking algorithm, Chem. Eng. Sci., Volume 57 (2002) no. 21, pp. 4429-4434 | DOI

[17] C. V. Chrysikopoulos; S. C. James Transport of neutrally buoyant and dense variably sized colloids in a two-dimensional fracture with anisotropic aperture, Transp. Porous Med., Volume 51 (2003), pp. 191-210 | DOI

[18] S. C. James; C. V. Chrysikopoulos Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture, J. Colloid Interface Sci., Volume 263 (2003) no. 1, pp. 288-295 | DOI

[19] S. C. James; C. V. Chrysikopoulos Monodisperse and polydisperse colloid transport in water-saturated fractures with various orientations: gravity effects, Adv. Water Resour., Volume 34 (2011) no. 10, pp. 1249-1255 | DOI

[20] X. Meng; D. Yang Determination of dynamic dispersion coefficient for particles flowing in a parallel-plate fracture, Colloids Surf. A: Physicochem. Eng. Asp., Volume 509 (2016), pp. 259-278 | DOI

[21] S. C. James; L. Wang; C. V. Chrysikopoulos Modeling colloid transport in fractures with spatially variable aperture and surface attachment, J. Hydrol., Volume 566 (2018), pp. 735-742 | DOI

[22] L. Zheng; L. Wang; C. James When can the local advection-dispersion equation simulate non-Fickian transport through fractures?, Stoch. Environ. Res. Risk Assess., Volume 33 (2019) no. 3, pp. 931-938 | DOI

[23] Y. Ding; X. Meng; D. Yang Determination of dynamic dispersion coefficient for solid particles flowing in a fracture with consideration of gravity effect, J. Energy Resour. Technol., Volume 145 (2020) no. 2, 053101

[24] D. J. Brush; N. R. Thomson Fluid flow in synthetic rough-walled fractures: Navier–Stokes, Stokes, and local cubic law simulations, Water Resour. Res., Volume 39 (2003) no. 4, pp. 1085-1100 | DOI

[25] A. H. Al-Yaarubi; C. C. Pain; C. A. Grattoni; R. W. Zimmerman Navier–Stokes simulations of fluid flow through a rock fracture, Dynamics of Fluids and Transport in Fractured Rock (Geophysical Monograph Series), Volume 162, AGU, Washington, DC, 2020, pp. 55-64

[26] P. W. Reimus The use of synthetic colloids in tracer transport experiments in saturated rock fractures, 1995 (Thesis, University of New Mexico, Albuquerque, New Mexico)

[27] R. L. Detwiler; H. Rajaram; R. J. Glass Solute transport in variable-aperture fractures: an investigation of the relative importance of Taylor dispersion and macrodispersion, Water Resour. Res., Volume 36 (2000) no. 7, pp. 1611-1625 | DOI

[28] S. C. James; T. Bilezikjian; C. Chrysikopoulos Contaminant transport in a fracture with spatially variable aperture in the presence of monodisperse and polydisperse colloids, Stoch. Env. Res. Risk A, Volume 19 (2005) no. 4, pp. 266-279 | DOI | Zbl

[29] D. D. Pollard; A. Aydin Progress in understanding jointing over the past century, Geol. Soc. Am. Bull., Volume 100 (1988), pp. 1181-1204 | DOI

[30] V. V. Mourzenko; J. F. Thovert; P. M. Adler Geomtry of simulated fractures, Phys. Rev. E, Volume 53 (1996) no. 6, pp. 5606-5626 | DOI

[31] P. M. Adler; J. F. Thovert Fractures and Fracture Networks, 15, Springer Science & Business Media, 1999

[32] R. Schultz Growth of geologic fractures into large-strain populations: review of nomenclature, subcritical crack growth, and some implications for rock engineering, Int. J. Rock Mech. Min. Sci., Volume 37 (2000), pp. 403-411 | DOI

[33] Q. Lei; X. Wang Tectonic interpretation of the connectivity of a multiscale fracture system in limestone, Geophys. Res. Lett., Volume 43 (2016), pp. 1551-1558 | DOI

[34] J. Rutqvist; O. Stephansson The role of hydromechanical coupling in fractured rock engineering, Hydrogeol. J., Volume 11 (2003), pp. 7-40 | DOI

[35] C. F. Tsang; R. Bernier; C. Davies Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal, Int. J. Rock Mech. Min. Sci., Volume 42 (2005), pp. 109-125 | DOI

[36] S. P. Bertels; D. A. DiCarlo; M. J. Blunt Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning, Water Resour. Res., Volume 37 (2001), pp. 649-662 | DOI

[37] J. Zhou; S. Hu; S. Fang; Y. Chen; C. Zhou Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading, Int. J. Rock Mech. Min. Sci., Volume 80 (2015), pp. 202-218 | DOI

[38] D. Huo; S. M. Benson Experimental investigation of stress-dependency of relative permeability in rock fractures, Transp. Porous Med., Volume 113 (2016), pp. 567-590 | DOI

[39] Y. Chen; H. Lian; W. Liang; J. Yang; V. P. Nguyen; S. P. A. Bordas The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses, Int. J. Rock Mech. Min. Sci., Volume 113 (2019), pp. 59-71 | DOI

[40] W. Jeong; J. Song Numerical investigations for flow and transport in a rough fracture with a hydromechanical effect, Energy Sources, Volume 27 (2005), pp. 997-1011 | DOI

[41] T. Koyama; B. Li; Y. Jiang; L. Jing Numerical simulations for the effects of normal loading on particle transport in rock fractures during shear, Int. J. Rock Mech. Min. Sci., Volume 45 (2008), pp. 1403-1419 | DOI

[42] P. K. Kang; S. Brown; R. Juanes Emergence of anomalous transport in stressed rough fractures, Earth Planet Sci. Lett., Volume 454 (2016), pp. 46-54 | DOI

[43] L. Zou; L. Jing; V. Cvetkovic Modeling of solute transport in a 3D rough-walled fracture–matrix system, Transp. Porous Med., Volume 116 (2017), pp. 1005-1029 | DOI | MR

[44] J. R. de Dreuzy; A. Beaudoin; J. Erhel Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical simulations, Water Resour. Res., Volume 43 (2007) no. 10, p. 13 | DOI

[45] J. R. de Dreuzy; A. Beaudoin; J. Erhel Reply to comment by A. Fiori et al. on Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical simulations, Water Resour. Res., Volume 44 (2008) no. 6, W06604 | DOI

[46] A. Beaudoin; J. R. de Dreuzy; J. Erhel Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media, Water Resour. Res., Volume 46 (2010) no. 12, p. 9 | DOI

[47] A. Beaudoin; J. R. de Dreuzy Numerical assessment of 3-D macrodispersion in heterogeneous porous media, Water Resour. Res., Volume 49 (2013) no. 5, pp. 2489-2496 | DOI | Zbl

[48] A. Beaudoin; A. Dartois; S. Huberson Analysis of the influence of averaged positive second invariant Qav of deformation tensor u on the maximum dilution index Emax in steady Darcy flows through isotropic heterogeneous porous media, Adv. Water Res., Volume 128 (2019), pp. 39-47 | DOI

[49] V. V. Mourzenko; J. F. Thovert; P. M. Adler Conductivity and transmissivity of a single fracture, Tranp. Porous Med., Volume 112 (2016) no. 3, pp. 235-256

[50] S. R. Brown; R. L. Kranz; B. P. Bonner Correlation between the surfaces of natural rock joints, Geophys. Res. Lett., Volume 13 (1986), pp. 1430-1433 | DOI

[51] S. K. Sinha; E. B. Sirota; S. Garoff; H. B. Stanley X-ray and neutron scattering from rough surfaces, Phys. Rev. B, Volume 38 (1988), pp. 2297-2311 | DOI

[52] B. B. Mandelbrot The Fractal Geometry of Nature, Freeman, San Francisco, 1983 | DOI | Zbl

[53] E. Bouchaud; J. P. Bouchaud Fracture surfaces: apparent roughness, relevant length scales, and fracture toughness, Phys. Rev. B, Volume 17 (1994), p. 17752 | DOI

[54] A. L. Gutjahr Fast fourier transforms for random field generation, 1989 New Mexico Institute of Mining and Technology Project Report for Los Alamos Grant to New Mexica Tech (Doctoral Dissertation)

[55] E. Pardo-Iguzquiza; M. Chica-Olmo The fourier integral method: an efficient spectral method for simulation of random fields, Math. Geol., Volume 25 (1993) no. 2, pp. 177-217 | DOI

[56] F. Hebe; V. Prykhodko; S. Schluter; S. Attinger Generating random fields with a truncated power-law variogram: a comparison of several numerical methods, Environ. Modell. Softw., Volume 55 (2014), pp. 32-48

[57] M. Frigo; S. G. Johnson The design and implementation of FFTW3, Proc. IEEE, Volume 93 (2005) no. 2, pp. 216-231 | DOI

[58] M. Roberts; J. C. Bowman Multithreaded implicity deadliased convolutions, J. Comp. Phys., Volume 356 (2018), pp. 98-114 | DOI

[59] I. W. Yeo; M. H. De Freitas; R. W. Zimmerman Effect of shear displacement on the aperture and permeability of rock, Int. J. Rock Mech. Min. Sci., Volume 35 (1998), pp. 1051-1070 | DOI

[60] R. Eymard; T. Gallouet; R. Herbin Finite volume methods, Handbook of Numerical Analysis, Volume 7, Elsevier, 2000, pp. 713-1018 | Zbl

[61] R. Eymard; T. Gallouet; R. Herbin A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, C. R. Math., Volume 344 (2007) no. 6, pp. 403-406 | DOI | MR | Zbl

[62] J. Erhel; J. R. de Dreuzy; A. Beaudoin; E. Bresciani; D. Tromeur-Dervout A paralle scientific software for heterogeneous hydrogeology, Paralle Computational Fluid Dynamics, Springer, Berlin, Heidelberg, 2009

[63] R. D. Falgout; J. E. Jones; U. M. Yang Pursuing scalability for hypre’s conceptual interfaces, ACM Trans. Math. Softw. (TOMS), Volume 31 (2005) no. 3, pp. 326-350 | DOI | MR | Zbl

[64] V. V. Mourzenko; J. F. Thovert; P. M. Adler Permeability of a single fracture: validity of the Reynolds equation, J. Phys. II, Volume 5 (1995) no. 3, pp. 465-482

[65] L. Moreno; Y. W. Tsang; C. F. Tsang; F. Hale; I. Neretnieks Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resour. Res., Volume 24 (1988) no. 12, pp. 2033-2048 | DOI

[66] M. W. Becker; A. M. Shapiro Tracer transport in fractured crystalline rock: evidence of nondiffusive breakthrough tailing, Water Resour. Res., Volume 36 (2000), pp. 1677-1686 | DOI

[67] A. F. B. Tompson; L. W. Gelhar Numerical simulation of solute transport in three-dimensional randomly heterogeneous porous media, Water Resour. Res., Volume 26 (1990) no. 10, pp. 2541-2562 | DOI

[68] M. Prevost; M. G. Edwards; M. J. Blunt Streamline tracing on curvilinear structured and unstructured grids, SPE J., Volume 7 (2002) no. 2, pp. 139-148 | DOI

[69] D. W. Pollock Semianalytical computation of path lines for finite-difference models, Groundwater, Volume 26 (1988) no. 6, pp. 743-750 | DOI

[70] Y. Kuznetsov; S. Repin New mixed finite element method on polygonal and polyhedral meshes, Russ. J. Numer. Anal. Math. Modell., Volume 18 (2003), pp. 261-278 | DOI | MR | Zbl

[71] E. Jimenez; K. Sabir; A. Datta-Gupta; M. J. King Spatial error and convergence in streamline simulation, SPE Reservoir Simulation Symposium (2005) | DOI

[72] H. M. Cheng; J. Droniou An HMM-ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media, J. Pet. Sci. Eng., Volume 172 (2019), pp. 707-723 | DOI

[73] L. W. Gelhar Stochastic Subsurface Hydrology, Prentice-Hall, Old Tappan, NJ, 1993, pp. 272-279

[74] D. Vogler; R. R. Settgast; C. Annavarapu; C. Madonna; P. Bayer; F. Amann Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high-pressure fluid injection, J. Geophys. Res., Volume 123 (2018), pp. 1186-1200 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Miscible transfer of solute in different model fractures: From random to multiscale wall roughness

Harold Auradou; Alejandro Boschan; Ricardo Chertcoff; ...

C. R. Géos (2010)


Numerical study on the shear-flow behavior and transport process in rough rock fractures

Yubao Zhang; Na Huang

C. R. Méca (2018)


Effects of rock fragments on water movement and solute transport in a Loess Plateau soil

Zhou Beibei; Shao Ming’an; Shao Hongbo

C. R. Géos (2009)