Comptes Rendus
Synthèse
A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 259-273.

Modeling soft biphasic permeable materials is a challenging issue tackled nowadays by countless researchers. The effective modeling of such materials is a corner stone in the understanding of soft biological materials and the manufacturing of effective replacements such as contact lenses, human cartilage replacements, and so on. In previous work, we modeled biphasic material mechanical behavior as a combination of an elastic solid and a pressurized fluid in a porous medium using Darcy’s equation. The modeling was simulated using the model reduction technique named proper generalized decomposition (PGD), which offers a tremendous reduction in the calculation time with respect to the classical simulation techniques, which had lead to the identification of soft materials properties. In the current work, we tackle the potential error generated by the use of linear elastic terms in the equilibrium equation. This error is modeled using both a new nonlinear term and a physically informed machine learning algorithm coupled to the PGD results. Later on, the contribution of the fluid reaction and solid reaction to the indentation force as well as the hyper parameters of the employed neural network are identified for an experimental indentation of a thick hydrogel.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.85
Mots clés : Proper generalized decomposition, Model reduction, Biphasic materials, Hybrid modeling, Neural network, Machine learning
Chady Ghnatios 1

1 Notre Dame University-Louaize, Department of Mechanical Engineering, Zouk Mosbeh, PO Box 72, Lebanon
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_2_259_0,
     author = {Chady Ghnatios},
     title = {A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {259--273},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.85},
     language = {en},
}
TY  - JOUR
AU  - Chady Ghnatios
TI  - A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 259
EP  - 273
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.85
LA  - en
ID  - CRMECA_2021__349_2_259_0
ER  - 
%0 Journal Article
%A Chady Ghnatios
%T A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials
%J Comptes Rendus. Mécanique
%D 2021
%P 259-273
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.85
%G en
%F CRMECA_2021__349_2_259_0
Chady Ghnatios. A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 259-273. doi : 10.5802/crmeca.85. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.85/

[1] F. Chinesta; E. Cueto; E. Abisset-Chavan; J.-L. Duval; F. Khaldi Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data, Arch. Comput. Methods Eng., Volume 27 (2020), pp. 105-134 | DOI | MR

[2] F. Chinesta; A. Ammar; E. Cueto Recent advances in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 327-350 | DOI | MR | Zbl

[3] C. Ghnatios; G. Asmar; E. Chakar; C. Bou Mosleh A reduced-order model manifold technique for automated structural defects judging using the pgd with analytical validation, C. R. Méc., Volume 34 (2019) no. 2, pp. 101-113 | DOI

[4] M. Perez; A. Barasinski; B. Courtemanche; C. Ghnatios; F. Chinesta Sensitivity thermal analysis in the laser-assisted tape placement process, AIMS Mater. Sci., Volume 5 (2018) no. 6, pp. 1053-1072 | DOI

[5] C. Bernardi; Y. Maday Spectral methods, Handb. Numer. Anal., Volume 5 (1997), pp. 209-485 | Zbl

[6] A. T. Patera; E. M. Ronquist Reduced basis approximation and a posteriori error estimation for a Boltzmann model, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 2925-2942 | DOI | MR | Zbl

[7] D. Amsallem; C. Farhat Projection-based reduced-order modeling, Stanford University Reduced Order Modelling Course, Stanford University, 2011

[8] G. M. Leonenko; T. N. Phillips On the resolution of the Fokker–Planck equation using a high-order reduced basis approximation, Comput. Methods Appl. Mech. Eng., Volume 199 (2009) no. 1–4, pp. 58-168 | Zbl

[9] C. Ghnatios; F. Masson; A. Huerta; E. Cueto; F. Chinesta Proper generalized decomposition based dynamic data-driven of thermal processes, Comput. Methods Appl. Mech. Eng., Volume 213–216 (2012), pp. 29-41 | DOI

[10] E. Cueto; C. Ghnatios; F. Chinesta; N. Monte; F. Sanchez; A. Falco Improving computational efficiency in LCM by using computational geometry and model reduction techniques, Key Eng. Mater., Volume 611 (2014), pp. 339-343 | DOI

[11] C. Ghnatios Simulation avance des problmes thermiques rencontrs lors de la mise en forme des composites, Ph. D. Thesis, Ecole Centrale Nantes (2012)

[12] A. Ammar; F. Chinesta; A. Falco On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 473-486 | DOI | MR | Zbl

[13] T. A. Porsching Estimation of the error in reduced basis method solution of nonlinear equations, Math. Comput. Modell., Volume 45 (1985) no. 172, pp. 487-496 | DOI | MR | Zbl

[14] A. Ammar; F. Chinesta; P. Diez; A. Huerta An error estimator for seperated representations of highly multidimensional models, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1872-1880 | DOI | Zbl

[15] C. Ghnatios; E. Abisset; A. Ammar; E. Cueto; J.-L. Duval; F. Chinesta Advanced separated spatial representations for hardly separable domains, Comput. Methods Appl. Mech. Eng., Volume 354 (2019), pp. 802-819 | DOI | MR | Zbl

[16] C. Ghnatios; E. Cueto; A. Falco; J.-L. Duval; F. Chinesta Spurious-free interpolations for non-intrusive PGD-based parametric solutions: application to composites forming processes, Int. J. Mater. Forming, Volume 14 (2021), pp. 83-95 | DOI

[17] C. Ghnatios; C. H. Mathis; R. Simic; N. D. Spencer; F. Chinesta Modeling soft permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation, Soft Matter, Volume 13 (2017), pp. 4482-4493 | DOI

[18] C. Ghnatios; N. Montes; H. Tertrais; J.-L. Duval; E. Abisset-Chavanne; A. Falco; F. Chinesta Towards parametric RTM process: the interpolative mapping, AIP Conf. Proc., Volume 2113 (2019), 100004 | DOI

[19] A. Adel; K. Salah Model order reduction using artificial neural networks, 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2016), pp. 89-92 | DOI

[20] D. Hartman; L. K. Mestha A deep learning framework for model reduction of dynamical systems, 2017 IEEE Conference on Control Technology and Applications (CCTA) (2017), pp. 1917-1922 | DOI

[21] R. M. Espinosa-Marzal; R. M. Bieleckia; N. D. Spencer Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach, Soft Matter, Volume 9 (2013), pp. 10572-10585 | DOI

[22] S. S. Pawaskar; Z. M. Jin; J. Fisher Modelling of fluid support inside articular cartilage during sliding, J. Eng. Tribol., Volume 221 (2007) no. 3, pp. 165-174

[23] A. C. Moore; D. L. Burris Tribological rehydration of cartilage and its potential role in preserving joint health, Osteoarthr. Cartil., Volume 25 (2017) no. 1, pp. 99-107 | DOI

[24] C. Ghnatios; I. Alfaro; D. Gonzalez; F. Chinesta; E. Cueto Data-driven generic modeling of poroviscoelastic materials, Entropy, Volume 21 (2019) no. 12, 1165 | DOI | MR

[25] J. V. Aguado; D. Borzacchiello; C. Ghnatios; F. Lebel; R. Upadhyay; C. Binetruy; F. Chinesta A simulation app based on reduced order modeling for manufacturing optimization of composite outlet guide vanes, Adv. Model. Simul. Eng. Sci., Volume 4 (2017) no. 1, pp. 1-26 | DOI

[26] C. Ghnatios; C. Mathis; F. Chinesta Poroelastic properties identification through mico indentation modeled by using the proper generalized decomposition, 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (2016), pp. 141-145

[27] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations, Springer Open, 2014 | DOI | Zbl

[28] C. Ghnatios; A. Ammar; A. Cimetiere; A. Hamdouni; A. Leygue; F. Chinesta First steps in the space separated representation of models defined in complex domains, ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012 (2012), pp. 37-42

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition

Chady Ghnatios; Ilige Hage; Najib Metni

C. R. Méca (2021)


Modeling of the vane test using a power-law fluid and model order reduction techniques: application to the identification of cement paste properties

Chady Ghnatios; Gérard-Philippe Zéhil; Charbel Habchi

C. R. Méca (2021)


Conciliating accuracy and efficiency to empower engineering based on performance: a short journey

Francisco Chinesta; Elias Cueto

C. R. Méca (2023)