Comptes Rendus
Synthèse
Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 345-369.

Human joints in general and the human knees particularly are subjected to impacts and wear on a daily basis, specifically during jumping. Considering their inefficient healing and the lack of effective replacements, knee joints became a hot topic for biomechanics research. Multiple works aim to model the knee joint behavior in the literature either experimentally or through finite elements simulations. In this work, we study the effects of the Lebanese folkloric dance Dabke jumping and compare it to vertical jumping. Moreover, we tackle the modeling and simulation of a tibiofemoral knee joint under impact using optimized inverse dynamics and the Brinkman model in the biphasic synovial joint domain. This joint model is mainly made of cartilage, a meniscus (both biphasic low permeability materials), and viscous synovial fluid. Because of the degenerated shape in the thickness direction, classical methods require a large number of degrees of freedom to correctly reproduce the knee behavior. To circumvent this problem, proper generalized decomposition (PGD) model reduction techniques are used to simulate the knee synovial joint. A smart, physically based morphing of space is used to accelerate the simulation process using model reduction techniques. The result of the work is a three-dimensional simulation of the velocity and pressure fields inside the synovial domain, as well as the loads and risks in every muscle and ligament. The experimental results are coupled to the simulations one to derive the main risks involved in both vertical jumping and Dabke jumping.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.89
Mots clés : Knee simulation, Impact, Proper generalized decomposition, Biphasic materials, Jumping risk, Shoe effect

Chady Ghnatios 1 ; Ilige Hage 1 ; Najib Metni 1

1 Notre Dame University-Louaizé, Department of Mechanical Engineering, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh, Lebanon
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_2_345_0,
     author = {Chady Ghnatios and Ilige Hage and Najib Metni},
     title = {Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {345--369},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.89},
     language = {en},
}
TY  - JOUR
AU  - Chady Ghnatios
AU  - Ilige Hage
AU  - Najib Metni
TI  - Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 345
EP  - 369
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.89
LA  - en
ID  - CRMECA_2021__349_2_345_0
ER  - 
%0 Journal Article
%A Chady Ghnatios
%A Ilige Hage
%A Najib Metni
%T Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition
%J Comptes Rendus. Mécanique
%D 2021
%P 345-369
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.89
%G en
%F CRMECA_2021__349_2_345_0
Chady Ghnatios; Ilige Hage; Najib Metni. Knee joint injury risk assessment by means of experimental measurements and proper generalized decomposition. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 345-369. doi : 10.5802/crmeca.89. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.89/

[1] C. Hirsch; V. H. Frankel Analysis of forces producing fractures of the proximal end of the femur, J. Bone Joint Surg., Volume 42 (1960) no. 3, pp. 633-640 (British volume) | DOI

[2] N. Mezghani; J. de Guise; G. Grimard; D. Baillargeon; Y. Ouakrim; G. Parent; A. Fuentes; P. Lavigne; P. Ranger Method and system for knee joint evaluation and diagnostic aid in normal and pathologic state, 3 January 2017 (U.S. Patent No. 9,532,732)

[3] D. G. Lloyd; T. F. Besier An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech., Volume 36 (2003) no. 6, pp. 765-776 | DOI

[4] J. M. Shippen; B. May Calculation of muscle loading and joint contact forces during the rock step in Irish dance, J. Dance Med. Sci., Volume 14 (2010) no. 1, pp. 11-18

[5] R. Michnik; J. Jurkojć; J. Pauk Identification of muscles forces during gait of children with foot disabilities, Mechanics, Volume 80 (2009) no. 6, pp. 48-51

[6] A. J. Schnorenberg; B. Slavens; M. Wang; L. Vogel; P. Smith; G. Harris Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility, J. Biomech., Volume 47 (2014) no. 1, pp. 269-276 | DOI

[7] C. Quental; J. Folgado; J. Ambrósio; J. Monteiro A multibody biomechanical model of the upper limb including the shoulder girdle, Multibody Syst. Dyn., Volume 28 (2012) no. 1–2, pp. 83-108 | DOI | MR

[8] G. Li; K. R. Kaufman; E. Y. Chao; H. E. Rubash Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee, J. Biomech. Eng., Volume 121 (1999) no. 3, pp. 316-322 | DOI

[9] D. J. Cleather; J. E. Goodwin; A. M. J. Bull Hip and knee joint loading during vertical jumping and push jerking, Clin. Biomech., Volume 28 (2013) no. 1, pp. 98-103 | DOI

[10] D. J. Cleather; A. M. J. Bull An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction, Ann. Biomed. Eng., Volume 39 (2011) no. 7, pp. 1925-1934 | DOI

[11] M. Kazemi; L. P. Li; P. Savard; M. D. Buschmann Creep behavior of the intact and meniscectomy knee joints, J. Mech. Behav. Biomed. Mater., Volume 4 (2011) no. 7, pp. 1351-1358 | DOI

[12] M. Kazemi; L. P. Li A viscoelastic poromechanical model of the knee joint in large compression, Mech. Eng. Phys., Volume 36 (2014), pp. 998-1006

[13] G. Li; J. Gil; A. Kanamori; S. L. Woo A validated three-dimensional computational model of a human knee joint, J. Biomech. Eng., Volume 121 (1999) no. 6, pp. 657-662 | DOI

[14] T. L. Donahue; M. L. Hull; M. M. Rashid; C. R. Jacobs A finite element model of the human knee joint for the study of tibio-femoral contact, J. Biomech. Eng., Volume 124 (2002) no. 3, pp. 273-280 | DOI

[15] M. Freutel; H. Schmidt; L. Dürselen; A. Ignatius; F. Galbusera Finite element modeling of soft tissues: material models, tissue interaction and challenges, Clin. Biomech. (Bristol, Avon), Volume 29 (2014) no. 4, pp. 363-372 | DOI

[16] K. B. Gu; L. P. Li A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci, Med. Eng. Phys., Volume 33 (2011) no. 4, pp. 497-503

[17] R. Shirazi; A. Shirazi-Adl; M. Hurtig Role of cartilage collagen fibrils networks in knee joint biomechanics under compression, J. Biomech., Volume 41 (2008) no. 16, pp. 3340-3348 | DOI

[18] P. N. Tandon; A. Chaurasia A porous implant model for a knee joint, Int. J. Bio-med. Comput., Volume 29 (1991) no. 1, pp. 45-59 | DOI

[19] M. Kazemi; L. P. Li; P. Savard; M. D. Buschmann Creep behavior of the intact and meniscectomy knee joints, J. Mech. Behav. Biomed. Mater., Volume 4 (2011) no. 7, pp. 1351-1358 | DOI

[20] M Kazemi; L. P. Li A viscoelastic poromechanical model of the knee joint in large compression, Mech. Eng. Phys., Volume 36 (2014), pp. 998-1006

[21] M. L. Rodriguez; L. P. Li Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints, BMC Musculoskelet. Disord., Volume 18 (2017) no. 447, pp. 1-10

[22] C. Ghnatios; F. Chinesta; C. Binetruy 3D modeling of squeeze flows occuring in composite laminates, Int. J. Mater. Form., Volume 8 (2015), pp. 73-83 | DOI

[23] R. M. Espinosa-Marzal; R. M. Bieleckia; N. D. Spencer Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach, Soft Matter, Volume 9 (2013), pp. 10572-10585 | DOI

[24] E. Bonnevie; V. Baro; L. Wang; D. Burris Fluid load support during local indentation of cartilage with a spherical probe, J. Biomech., Volume 45 (2012), pp. 1036-1041 | DOI

[25] A. Moore; D. Burris An analytical model to predict interstitial lubrication of cartilage in migration contact areas, J. Biomech., Volume 47 (2014), pp. 148-153 | DOI

[26] S. S. Pawaskar; Z. M. Jin; J. Fisher Modelling of fluid support inside articular cartilage during sliding, J. Eng. Tribol., Volume 221 (2007), pp. 165-174

[27] M. Harris; A. Anderson; C. Henak; B. Ellis; C. Peters; J. Weiss Finite element prediction of cartilage contact stresses in normal human hips, J. Orthop. Res., Volume 30 (2012), pp. 1133-1139 | DOI

[28] C. Ghnatios; C. H. Mathis; R. Simic; N. D. Spencer; F. Chinesta Modeling soft permeable matter with the proper generalized decomposition (PGD) approach, and verification by means of nanoindentation, Soft Matter, Volume 13 (2017), pp. 4482-4493 | DOI

[29] F. Bordeu; C. Ghnatios; D. Boulze; B. Carles; D. Sireude; A. Leygue; F. Chinesta Parametric 3D elastic solutions of beams involved in frame structures, Adv. Aircr. Spacecr. Sci., Volume 2 (2015), pp. 233-248 | DOI

[30] E. Cueto; C. Ghnatios; F. Chinesta; N. Montes; F. Sanchez; A. Falco Improving computational efficiency in LCM by using computational geometry and model reduction techniques, Key Eng. Mater., Volume 611–612 (2014), pp. 339-343 | DOI

[31] F. Chinesta; A. Ammar; E. Cueto Recent advances in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010), pp. 327-350 | DOI | MR | Zbl

[32] E. H. Garling; B. L. Kaptein; B. Mertens; W. Barendregt; H. E. J. Veeger; R. G. H. H. Nelissen; E. R. Valstar Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers, J. Biomech., Volume 40 (2007) no. 1, p. S18-S24 [published correction appears in J. Biomech. 41 (2008), no. 10, p. 2332-2335] | DOI

[33] R. Dumas; V. Camomilla; T. Bonci; L. Cheze; A. Cappozzo Generalized mathematical representation of the soft tissue artefact, J. Biomech., Volume 47 (2014) no. 2, pp. 476-481 | DOI

[34] P. Breitkopf; A. Rassineux; P. Villon An introduction to moving least squares meshfree methods, Meshfree Comput. Mech., Volume 11 (2002), pp. 825-867 | Zbl

[35] C. Ghnatios; F. Masson; A. Huerta; E. Cueto; F. Chinesta Proper generalized decomposition based dynamic data-driven of thermal processes, Comput. Methods Appl. Mech. Eng., Volume 213–216 (2012), pp. 29-41 | DOI

[36] D. A. Winter Biomechanics and Motor Control of Human Movement, John Wiley & Sons, Hoboken, NJ, 2009

[37] A. Erdemir; S. McLean; W. Herzog; A. Van Den Bogert Model-based estimation of muscle forces exerted during movements, Clin. Biomech., Volume 22 (2007), pp. 131-154 | DOI

[38] D. Cleather; A. Bull An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction, Ann. Biomed. Eng., Volume 39 (2011) no. 7, pp. 1925-1934 | DOI

[39] L. L. Menegaldo; A. De Toledo Fleury; H. I. Weber Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model, J. Biomech., Volume 37 (2004) no. 9, pp. 1447-1453 | DOI

[40] M. D. Klein Horsman; H. Koopman; F. Van Der Helm; L. Poliacu Prose; H. Veeger Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity, Clin. Biomech., Volume 22 (2007), pp. 239-247 | DOI

[41] Y. Wang; H. Meng; X. Yuan; J. Peng; Q. Guo; S. Lu; A. Wang Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering, Biomed. Eng. Online, Volume 13 (2014) no. 80, pp. 1-18

[42] A. Maroudas; P. Bullough Permeability of articular cartilage, Nature, Volume 219 (1968) no. 5160, pp. 1260-1261 | DOI

[43] B. Reynaud; T. Quinn Anisotropic hydraulic permeability in compressed articular cartilage, J. Biomech., Volume 39 (2006), pp. 131-137 | DOI

[44] V. Wright; D. Dowson Lubrication and cartilage, J. Anatomy, Volume 121 (1976) no. 1, pp. 107-118

[45] J. Donea; A. Huerta Finite Element Method for Flow Problems, Wiley, 2003

[46] T. Hughes; W. Liu; A. Brooks Finite element analysis of incompressible viscous flows by the penalty function formulation, J. Comput. Phys., Volume 30 (1979), pp. 1-60 | DOI | MR | Zbl

[47] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations, SpringerBriefs, 2014 | DOI | Zbl

[48] A. Connolly; D. Fitz Patrick; J. Moulton; J. Lee; A. Lerner Tibiofemoral cartilage thickness distribution and its correlation with anthropometric variables, Proc. Inst. Mech. Eng. H, Volume 222 (2008) no. 1, pp. 29-39 | DOI

[49] F. Iranpour; A. M. Merican; A. A. Amis; J. P. Cobb The width: thickness ratio of the patella, Clin. Orthop. Relat. Res., Volume 466 (2008) no. 5, pp. 1198-1203 | DOI

[50] K. Bloecker; M. Englund; W. Wirth; M. Hudelmaier; R. Burgkart; R. B. Frobell; F. Eckstein Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area—a cross-sectional study, BMC Musculoskelet. Disord., Volume 12 (2011) no. 248, pp. 1-9

[51] W. Wirth; R. Frobell; R. Souza; X. Li; B. Wyman; M. P. Le Graverand; T. M. Link; S. Majumdar; F. Eckstein A three-dimensional quantitative method to measure meniscus shape, position, and signal intensity using MR images: a pilot study and preliminary results in knee osteoarthritis, Magn. Reson. Med., Volume 63 (2010) no. 5, pp. 1162-1171 | DOI

[52] E. Servien; D. Viskontas; B. Giuffre; M. Coolican; D. Parker Reliability of bony landmarks for restoration of the joint line in revision knee arthroplasty, Knee Surg. Sports Traumatol. Arthrosc., Volume 16 (2008), pp. 263-269 | DOI

[53] J. L. Xiao; Z. L. Gao; Y. G. Qin; L. Y. L. Zhu; X. Z. Li; T. Liu Use of Insall-Salvati ratio and knee joint line positioning by MR imaging to restore joint lines during revision knee arthroplasty in the Chinese population, Kuwait Med. J., Volume 48 (2016) no. 1, pp. 17-24

[54] A. Courard; D. Néron; P. Ladevèze; L. Ballere Integration of PGD-virtual charts into an engineering design process, Comput. Mech., Volume 57 (2016), pp. 637-651 | DOI | MR | Zbl

[55] C. Ghnatios; A. Ammar; A. Cimetiere; A. Hamdouni; A. Leygue; F. Chinesta First steps in the space separated representation of models defined in complex domains, ASME 11th Biennial Conference on Engineering Systems Design and Analysis (2012), pp. 37-42

[56] C. Ghnatios; G. Xu; A. Leygue; M. Visionneau; F. Chinesta; A. Cimetière On the space separated representation when addressing the solution of PDE in complex domains, Discrete Contin. Dyn. Syst.-S, Volume 9 (2016) no. 2, pp. 475-500 | MR

[57] C. Ghnatios; E. Abisset; A. Ammar; E. Cueto; J.-L. Duval; F. Chinesta Advanced separated spatial representations for hardly separable domains, Comput. Methods Appl. Mech. Eng., Volume 354 (2019), pp. 802-819 | DOI | MR | Zbl

[58] P. Lento; V. Akuthota Meniscal injuries: a critical review, J. Back Musculoskelet. Rehabil., Volume 15 (2000) no. 2, pp. 55-62 | DOI

Cité par Sources :

Commentaires - Politique