Comptes Rendus
Short paper
Lipschitz regularization for softening material models: the Lip-field approach
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 415-434.

Softening material models are known to trigger spurious localizations. This may be shown theoretically by the existence of solutions with zero dissipation when localization occurs and numerically with spurious mesh dependency and localization in a single layer of elements. We introduce in this paper a new way to avoid spurious localization. The idea is to enforce a Lipschitz regularity on the internal variables responsible for the material softening. The regularity constraint introduces the needed length scale in the material formulation. Moreover, we prove bounds on the domain affected by this constraint. A first one-dimensional finite element implementation is proposed for softening elasticity and softening plasticity.

Les modèles de matériaux adoucissants sont connus pour déclencher des localisations parasites. Cela peut être démontré théoriquement par l’existence de solutions avec une dissipation nulle lors de la localisation et numériquement avec une dépendance de maillage et une localisation dans une seule couche d’éléments. Nous introduisons dans cet article une nouvelle façon d’éviter les localisations parasites. L’idée est d’imposer une régularité de Lipschitz sur les variables internes responsables de l’adoucissement. La contrainte de régularité introduit l’échelle de longueur nécessaire dans la formulation du matériau. De plus, nous prouvons des bornes sur le domaine affecté par cette contrainte. Une première mise en œuvre par éléments finis unidimensionnels est proposée pour l’adoucissement élastique ou plastique.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.91
Keywords: Softening, Localization, Damage, Plasticity, Lipschitz, Lip-field
Mot clés : Adoucissement, Localisation, Endommagement, Plasticité, Lipschitz, Lip-field

Nicolas Moës 1, 2; Nicolas Chevaugeon 3

1 Ecole Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 rue de la Noë, 44321 Nantes, France
2 Institut Universitaire de France (IUF), France
3 Ecole Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 rue de la Noë, 44321 Nantes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2021__349_2_415_0,
     author = {Nicolas Mo\"es and Nicolas Chevaugeon},
     title = {Lipschitz regularization for softening material models: the {Lip-field} approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {415--434},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.91},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Moës
AU  - Nicolas Chevaugeon
TI  - Lipschitz regularization for softening material models: the Lip-field approach
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 415
EP  - 434
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.91
LA  - en
ID  - CRMECA_2021__349_2_415_0
ER  - 
%0 Journal Article
%A Nicolas Moës
%A Nicolas Chevaugeon
%T Lipschitz regularization for softening material models: the Lip-field approach
%J Comptes Rendus. Mécanique
%D 2021
%P 415-434
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.91
%G en
%F CRMECA_2021__349_2_415_0
Nicolas Moës; Nicolas Chevaugeon. Lipschitz regularization for softening material models: the Lip-field approach. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 415-434. doi : 10.5802/crmeca.91. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.91/

[1] Z. Bazant; T. Belytschko; T. Chang Continuum theory fo strain-softening, J. Eng. Mech., Volume 110 (1984), pp. 1666-1692 | DOI

[2] G. Pijaudier-Cabot; Z. Bazant Non-local damage theory, J. Eng. Mech., Volume 113 (1987), pp. 1512-1533 | DOI | Zbl

[3] Z. Bazant; M. Jirasek Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., Volume 128 (2002), pp. 1119-1149 | DOI

[4] E. Lorentz; S. Andrieux Analysis of non-local models through energetic formulations, Int. J. Solids Struct., Volume 40 (2003), pp. 2905-2936 | DOI | MR | Zbl

[5] C. Giry; F. Dufour; J. Mazars International journal of solids and structures stress-based nonlocal damage model, Int. J. Solids Struct., Volume 48 (2011) no. 25–26, pp. 3431-3443 | DOI

[6] G. Rastiello; C. Giry; F. Gatuingt; R. Desmorat From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length, Comput. Methods Appl. Mech. Eng., Volume 331 (2018), pp. 650-674 | DOI | MR | Zbl

[7] E. C. Aifantis On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol., Volume 106 (1984) no. 4, pp. 326-330 | DOI

[8] A. E. Triantafyllidis N A gradient approach to localization of deformation: I. Hyperelastic model, J. Elast., Volume 16 (1986), pp. 225-237 | DOI | Zbl

[9] C. Z. Schreyer H One-dimensional softening with localization, J. Appl. Mech., Volume 53 (1986), pp. 891-979

[10] H. B. Mühlhaus; L. Vardoulakis The thickness of shear bands in granular materials, Geotechnique, Volume 37 (1987), pp. 271-283 | DOI

[11] M. Frémond; B. Nedjar Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 33 (1996) no. 8, pp. 1083-1103 | DOI | MR | Zbl

[12] G. Pijaudier-Cabot; N. Burlion Damage and localisation in elastic materials with voids, Mech. Cohesive-Frict. Mater., Volume 144 (1996), pp. 129-144 | DOI

[13] R. Peerlings; M. Geers; R. De Borst; W. Brekelmans A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., Volume 38 (2001) no. 44–45, pp. 7723-7746 | DOI | Zbl

[14] Q.-S. Nguyen; S. Andrieux The non-local generalized standard approach: a consistent gradient theory, C. R. Acad. Sci.: Méc., Phys., Chim., Astronom., Volume 333 (2005), pp. 139-145

[15] D. Mumford; J. Shah Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., Volume 42 (1989), pp. 577-685 | DOI | MR | Zbl

[16] L. Ambrosio Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., Volume 111 (1990), pp. 291-322 | DOI | MR | Zbl

[17] L. Ambrosio; A. Braides Energies in SBV and variational models in fracture mechanics, Proceedings of the EurHomogenization Congress, Nizza, Gakuto Int. Series, Math. Sci. and Appl. (1997), pp. 1-22 | Zbl

[18] L. Ambrosio; V. Tortorelli Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence, Commun. Pure Appl. Math., Volume 43 (1990), pp. 999-1036 | DOI | Zbl

[19] E. De Giorgi New problems on minimizing movements, Boundary Value Problems for PDE and Applications (C. Baiocchi; J. Lions, eds.), Masson, Paris, 1993, pp. 81-98

[20] M. Buliga Energy minimizing brittle crack propagation, J. Elast., Volume 52 (1998) no. 3, pp. 201-238 | DOI | MR | Zbl

[21] M. Buliga Hamiltonian inclusions with convex dissipation with a view towards applications, Ann. Acad. Romanian Sci.: Ser. Math. Appl., Volume 1 (2009) no. 2, pp. 228-251 | MR | Zbl

[22] B. Bourdin; G. A. Francfort; J.-J. Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI | MR | Zbl

[23] G. A. Francfort; J.-J. Marigo Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, Volume 46 (1998), pp. 1319-1412 | DOI | MR | Zbl

[24] A. Mielke Evolution in Rate-Independent Systems, Elsevier, B.V., Amsterdam, 2005, pp. 461-559 (Chap. 6) | Zbl

[25] B. Bourdin; G. a. Francfort; J.-J. Marigo The variational approach to fracture, J. Elast., Volume 91 (2008) no. 1–3, pp. 5-148 | DOI | MR | Zbl

[26] A. Karma; D. Kessler; H. Levine Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., Volume 87 (2001) no. 4, 045501 | DOI

[27] V. Hakim; A. Karma Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, Volume 57 (2009) no. 2, pp. 342-368 | DOI | Zbl

[28] H. Amor; J.-J. Marigo; C. Maurini Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, Volume 57 (2009) no. 8, pp. 1209-1229 | DOI | Zbl

[29] C. Miehe; F. Welschinger; M. Hofacker Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., Volume 83 (2010) no. 10, pp. 1273-1311 | DOI | MR | Zbl

[30] C. Miehe; M. Hofacker; F. Welschinger A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 45–48, pp. 2765-2778 | DOI | MR | Zbl

[31] C. Kuhn; R. Müller A continuum phase field model for fracture, Eng. Fract. Mech., Volume 77 (2010) no. 18, pp. 3625-3634 | DOI | Zbl

[32] M. Ambati; T. Gerasimov; L. De Lorenzis Phase-field modeling of ductile fracture, Comput. Mech., Volume 55 (2015) no. 5, pp. 1017-1040 | DOI | MR | Zbl

[33] N. Moës; C. Stolz; P.-E. Bernard; N. Chevaugeon A level set based model for damage growth: the thick level set approach, Int. J. Numer. Methods Eng., Volume 86 (2011), pp. 358-380 | DOI | MR | Zbl

[34] C. Stolz; N. Moës A new model of damage: a moving thick layer approach, Int. J. Fract., Volume 174 (2012) no. 1, pp. 49-60 | DOI

[35] N. Moës; C. Stolz; N. Chevaugeon Coupling local and non-local damage evolution with The Thick Level Set model, Adv. Model. Simul. Eng. Sci., Volume 2 (2014) no. 16, pp. 1-21

[36] A. J. Stershic; J. E. Dolbow; N. Moës The Thick Level-Set Model for dynamic fragmentation, Eng. Fract. Mech., Volume 172 (2017), pp. 39-60 | DOI

[37] M. Frémond; C. Stolz On alternative approaches for graded damage modelling, Models, Simulation, and Experimental Issues in Structural Mechanics (M. Frémond; F. Maceri; G. Vairo, eds.) (Springer Series in Solid and Structural Mechanics), Volume 8, Springer International Publishing, Cham, 2017, pp. 87-104 | DOI | MR

[38] N. Valoroso; C. Stolz Progressive damage in quasi-brittle solids, Proceedings of XXIV AIMETA Conference 2019 (AIMETA 2019) (2020) | DOI

[39] P. Mialon Eléments d’analyse et de résolution numérique des relations de l’élasto-plasticité, Bull. Dir. Études Rech.—Electr. Fr. Sér. C Math. Informat. (1986) no. 3, pp. 57-88 (French) | MR | Zbl

[40] M. Ortiz; L. Stainier The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Eng., Volume 171 (1999) no. 3, pp. 419-444 | DOI | MR | Zbl

[41] L. Boyd; S. P. Vandenberghe Convex Optimization, Cambridge University Press, Cambridge, 2004

[42] V. Krishnan; A. A. A. Makdah; F. Pasqualetti Lipschitz bounds and provably robust training by Laplacian smoothing (2020) (https://arxiv.org/abs/2006.03712)

[43] B. Halphen; Q.-S. Nguyen Sur les matériaux standards généralisés, J. Méc., Volume 14 (1975) no. 1, pp. 39-63 | Zbl

[44] P. Germain; P. Suquet; Q. S. Nguyen Continuum thermodynamics, ASME J. Appl. Mech., Volume 50 (1983), pp. 1010-1020 | DOI | Zbl

[45] J. Simo; T. Hughes Computational Inelasticity, Springer, New York, 1997, 392 pages | Zbl

[46] J. Zghal; K. Moreau; N. Moës; D. Leguillon; C. Stolz Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion, Int. J. Fract., Volume 211 (2018) no. 1–2, pp. 253-280 | DOI

[47] E. Lorentz; V. Godard Gradient damage models: toward full-scale computations, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 21–22, pp. 1927-1944 | DOI | MR | Zbl

[48] A. Parrilla Gómez; N. Moës; C. Stolz Comparison between thick level set (TLS) and cohesive zone models, Adv. Model. Simul. Eng. Sci., Volume 2 (2015) no. 1, 18 | DOI

[49] P. Virtanen et al. SciPy 1.0 Contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, Volume 17 (2020), pp. 261-272 | DOI

[50] D. Kraft et al. A software package for sequential quadratic programming, 1988 http://hdl.handle.net/10068/147127 | Zbl

[51] M. A. Crisfield A fast incremental/iterative solution procedure that handles “snap-through”, Comput. Struct., Volume 13 (1981), pp. 55-62 | DOI | Zbl

[52] R. De Borst Computation of post-bifurcation and post-failure behavior of strain softening solids, Comput. Struct., Volume 2 (1987) no. 2, pp. 211-224 | DOI | Zbl

[53] M. Crandall; P.-L. Lions Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 277 (1983), pp. 1-42 | DOI | MR | Zbl

[54] M. Crandall; L. Evans; R. Gariepy Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differ. Equ., Volume 13 (2001), pp. 123-139 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy