Comptes Rendus
Commentaire
Investigation of the effect of ring-cavity on secondary-combustion and interior ballistic stabilization with low-temperature solid propellant in gas ejection
Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 391-413.

The potential for secondary-combustion with low-temperature solid propellant in gas generation is a potential risk to ejection application. This study performed a three-dimensional dynamic numerical simulation with Re-Normalization Group turbulence model and finite-rate/eddy-dissipation model of a two-step reaction mechanism to better understand the interaction between secondary-combustion and ring-cavity structures, and combustion effect on the loads and interior ballistic stabilization during ejection. The dynamic zone of rail cover was modelled as a rigid body, and its motion was coupled with the secondary-combustion flow in the initial chamber based on the dynamic layering method. A comparison between the numerical results and experimental data in published literature showed good agreement. Four different ring-cavity volume geometries were simulated, including no ring-cavity. Results showed that three-stage high-temperature zone can be divided in the initial chamber at the founding time in the four cases, which are a pair of spherical high-temperature zone, high-temperature zone with skirt touching walls and high-temperature zone reverse from rail cover. Additionally, increasing ring-cavity volume can accelerate the axial and radial hot gas velocity on the ring-cavity cross-section and postpone secondary-combustion process. It was also found that larger ring-cavity volume structure can smoothen the pressure and acceleration curves, reduce the out-tube-velocity and delay the out-tube-time.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.92
Mots clés : Low-temperature propellant, Secondary-combustion, Confined initial chamber, Ring-cavity, Loads, Gas ejection interior ballistic
Xiao-lei Hu 1 ; Jia-yi Guo 1 ; Chuan-bin Sun 1 ; Gui-gao Le 2

1 School of Mechanical Engineering, Anhui University of Technology, Ma’anshan, 243002, China
2 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_2_391_0,
     author = {Xiao-lei Hu and Jia-yi Guo and Chuan-bin Sun and Gui-gao Le},
     title = {Investigation of the effect of ring-cavity on secondary-combustion and interior ballistic stabilization with low-temperature solid propellant in gas ejection},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {391--413},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.92},
     language = {en},
}
TY  - JOUR
AU  - Xiao-lei Hu
AU  - Jia-yi Guo
AU  - Chuan-bin Sun
AU  - Gui-gao Le
TI  - Investigation of the effect of ring-cavity on secondary-combustion and interior ballistic stabilization with low-temperature solid propellant in gas ejection
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 391
EP  - 413
VL  - 349
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.92
LA  - en
ID  - CRMECA_2021__349_2_391_0
ER  - 
%0 Journal Article
%A Xiao-lei Hu
%A Jia-yi Guo
%A Chuan-bin Sun
%A Gui-gao Le
%T Investigation of the effect of ring-cavity on secondary-combustion and interior ballistic stabilization with low-temperature solid propellant in gas ejection
%J Comptes Rendus. Mécanique
%D 2021
%P 391-413
%V 349
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmeca.92
%G en
%F CRMECA_2021__349_2_391_0
Xiao-lei Hu; Jia-yi Guo; Chuan-bin Sun; Gui-gao Le. Investigation of the effect of ring-cavity on secondary-combustion and interior ballistic stabilization with low-temperature solid propellant in gas ejection. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 391-413. doi : 10.5802/crmeca.92. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.92/

[1] E. A. Salgansky; N. A. Lutsenko; V. A. Levin; L. S. Yanovskiy Modeling of solid fuel gasification in combined charge of low-temperature gas generator for high-speed ramjet engine, Aerosp. Sci. Technol., Volume 84 (2019), pp. 31-36 | DOI

[2] Y. J. Shao; W. Zhang; Q. H. Gao; G. Tian; Z. W. Yang; A. B. Ming Dynamic modeling of exergy efficiency and parameters optimization for gas ejection system, Appl. Therm. Eng., Volume 146 (2019), pp. 931-942 | DOI

[3] P. Baiocco; G. Ramusatm; A. Sirbi; T. Bouilly; F. Lavelle; T. Cardone; H. Fischer; S. Appel System driven technology selection for future European launch systems, Acta Astronaut., Volume 107 (2015), pp. 301-316 | DOI

[4] Y. Wu; X. Qu Obstacle avoidance and path planning for carrier aircraft launching, Chin. J. Aeronaut., Volume 28 (2015), pp. 659-703

[5] J. Ren; F. B. Yang; D. W. Ma; G. G. Le; J. L. Zhong Pneumatic performance study of a high pressure ejection device based on real specific energy and specific enthalpy, Entropy, Volume 19 (2014), pp. 1593-1596

[6] R. Pucclo; F. Maggl; G. Columbo Low-temperature gas generator propellants, XXI Italian Association of Aeronautics and Astronautics (AIDAA) Congress and 3rd International Conference of the European Aerospace Societies (CEAS), 11 October 2011 (2011), pp. 24-28

[7] A. Vorozhtsov; S. Bondarchuk; A. Salko; O. Kondratova Mathematical simulation of airbag inflation by low-temperature gas generator products, Propellant. Explos. Pyrotech., Volume 25 (2000), pp. 220-223 | DOI

[8] V. Shandakov; V. Puzanov; V. Komarov; V. Borachkin The method of low-temperature generating in solid gas generators, Fiz. Goreniya I Vzryva, Volume 4 (1999) no. 4, pp. 75-78

[9] V. A. Levin; N. A. Lutsenko; E. A. Salgansky; L. S. Yanovskiy A model of solid-fuel gasification in the combined charge of a low-temperature gas generator of a flying vehicle, Doklay Phys., Volume 63 (2018), pp. 375-379 | DOI

[10] V. E. Zarko; L. K. Gusachenko Simulation of Energetic Materials Combustion, Russian Academy of Sciences Novosibirsk Inst of Chemical Kinetics and Combustion, Saint Petersburg, Russia, 2000 | DOI

[11] A. I. Atwood; T. L. Boggs; P. O. Curran; T. P. Parr; D. M. Hanson-Parr; C. F. Price Burning rate of solid propellant ingredients, Part 1: Pressure and initial temperature effects, J. Propul. Power, Volume 15 (1999), pp. 740-747 | DOI

[12] V. A. Strunin; L. I. Nikolaeva Influence of additives on the characteristics of the combustion of layered systems imitating composite propellants, Combust. Explos. Shockwaves, Volume 11 (2017), pp. 419-428

[13] D. Claresta; B. Brian On the combustion of heterogeneous AP/HTPB composite propellants: A review, Fuel, Volume 254 (2019), pp. 1-15

[14] J. U. Schlüter Static control of combustion oscillations by coaxial flows: a large-eddy-simulations investigation, J. Propul. Power, Volume 20 (2004), pp. 460-467 | DOI

[15] B. Wang; Z. M. Rao; Q. F. Xie; P. Wlański; G. Rarata Brief review on passive and active methods for explosion and detonation suppression in tubes and galleries, J. Loss Prev. Process Ind., Volume 49 (2017), pp. 280-290 | DOI

[16] R. C. Steele; L. H. Cowell; S. M. Cannon; C. E. Smith Passive control of combustion instability in lean premixed combustors, J. Eng. Gas Turbines Power, Volume 122 (2000), pp. 414-419 | DOI

[17] J. D. Eldredge; A. P. Dowling The absorption of axial acoustic waves by a perforated liner with bias flow, J. Fluid Mech., Volume 485 (2003), pp. 307-335 | DOI | Zbl

[18] D. L. Gysling; G. S. Copeland; D. C. McCormck; W. M. Proscia Combustion system damping augmentation with Helmholtz resonators, J. Eng. Gas Turbines Power, Volume 122 (2000), pp. 269-274 | DOI

[19] J. C. Oefelein; V. Yang Comprehensive review of liquid-propellant combustion instabilities in F-1 engines, J. Propul. Power, Volume 9 (1993), pp. 657-677 | DOI

[20] S. Meng; H. Zhou; K. Cen Application of perforated plate in passive control of the nonpremixed swirl combustion instability under acoustic excitation, J. Eng. Gas Turbines Power, Volume 141 (2019) no. 9, pp. 1-12 | DOI

[21] H. Zhou; Z. H. Liu; H. Fang; C. F. Tao Attenuation effects of perforated plates with heterogeneously distributed holes on combustion instability in a spray flame combustor, J. Mech. Sci. Technol., Volume 34 (2020) no. 11, pp. 4865-4875 | DOI

[22] H. Zhou; Z. H. U. Liu; C. F. Tao; M. X. Zhou Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates, J. Acoust. Soc. Am., Volume 148 (2020) no. 3, pp. 1755-1766 | DOI

[23] N. Tran; S. Ducruix; T. Schuller Passive control of the inlet acoustic boundary of a swirled burner at high amplitude combustion instabilities, J. Eng. Gas Turbines Power, Volume 131 (2009), 051502 | DOI

[24] A. Scarpato; N. Tran; S. Ducruix; T. Schuller Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low Strouhal number, J. Sound Vib., Volume 331 (2012), pp. 276-290 | DOI

[25] A. Scarpato; S. Ducruix; T. Schuller A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers, C. R. Mec., Volume 341 (2013), pp. 161-170 | DOI

[26] J. P. V. Doormaal; G. D. Raithby Enhancement of the simple method for predicting incompressible fluid flows, Numer. Heat Transf., Volume 7 (1984), pp. 147-163 | Zbl

[27] S. W. Kim; T. J. Benson Calculation of a circular jet in crossflow with a multiple-time-scale turbulence model, Int. J. Heat Mass Transf., Volume 35 (1992), pp. 2357-2365 | DOI | Zbl

[28] P. Sathiah; E. Komen; D. Roekaerts The role of CFD combustion modeling in hydrogen safety management-Part I: Validation based on small scale experiments, Nucl. Eng. Des., Volume 248 (2012), pp. 93-107 | DOI

[29] Z. Han; R. D. Reitz Turbulence modeling of internal combustion engines using RNG k-ε models, Combust. Sci. Technol., Volume 106 (1995), pp. 267-295 | DOI

[30] Chemical Equilibrium Applications (CEA) software: https://federallabs.org/technology/chemical-equilibrium-applications-cea | DOI

[31] X. L. Hu; G. G. Le; D. W. Ma; J. Ren; X. H. Zhou The influence of annular cavity on secondary combustion of gas-ejection initial cavity, Acta Armamentarii, Volume 36 (2015) no. 6, pp. 1024-1032

[32] H. J. Chen; X. Zhao; Y. Zhao; L. Gao Influence of structural parameters of diversion cone on smooth effect of gas ejection bottom pressure impact, J. Propul. Technol., Volume 40 (2019) no. 11, pp. 2444-2453

[33] H. H. Xiao; D. Makarov; J. H. Sun; V. Molkov Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct, Combust. Flame, Volume 159 (2012), pp. 1523-1538 | DOI

[34] H. H. Xiao; R. W. Houim; E. S. Oran Formation and evolution of distorted tulip flames, Combust. Flame, Volume 162 (2015), pp. 4084-4101 | DOI

[35] J. D. Ott; E. S. Oran; J. D. Anderson A mechanism for flame acceleration in narrow tubes, AIAA J., Volume 41 (2003), pp. 1391-1396 | DOI

[36] V. N. Kurdyumov; M. Matalon Flame acceleration in long narrow open channels, Proc. Combust. Inst., Volume 34 (2013), pp. 865-872 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The structure of multidimensional strained flames under transcritical conditions

L. Pons; N. Darabiha; S. Candel; ...

C. R. Méca (2009)


Eulerian versus Lagrangian simulation of unsteady two-way coupled coalescing two-phase flows in solid propellant combustion

François Doisneau; Joël Dupays; Angelo Murrone; ...

C. R. Méca (2013)


Large-Eddy Simulation of combustion instabilities in a variable-length combustor

Romain Garby; Laurent Selle; Thierry Poinsot

C. R. Méca (2013)