Comptes Rendus
Short paper
Multi-scale study of diffusion in composite grain–pore systems based on particles random walk
Comptes Rendus. Mécanique, Volume 349 (2021) no. 3, pp. 529-558.

This paper studies diffusion processes at different scales in two-dimensional (2D) composite media (grain–pore porous micromodels). To model diffusion, this study uses the random walk particle tracking (RWPT) method based on 2D analytical solutions in finite and semi-infinite domains with zero-flux boundary conditions (BC) at grain boundaries. The analytical solutions are developed using a method of images. Then, an RWPT combined to a Stop&Go algorithm is derived from these analytical solutions. The developed RWPT algorithm is then used to model diffusion processes inside the pores at the “microscopic” level (microscale), while the grain elements are assumed inaccessible to diffusion (zero-flux BC condition at the interface grain/pore). The composite medium, where the diffusion occurs, is a numerical micromodel made of periodic motifs of rectangular grains. Particles are initially located at the center of a pore, and diffuses in the periodic motifs micromodel (infinite domain). First, the grains are chosen square with different sizes to vary the porosity. Second, for constant porosities, the grains are elongated to study the effect of the anisotropy ratio on diffusion processes. Effective macroscale properties (porosities, effective diffusion tensors, tortuosities) are then calculated using moments of particles positions. The results obtained fit well with theoretical expectations and are in very good agreement with results found in the literature.

Revised after acceptance:
Published online:
DOI: 10.5802/crmeca.94
Keywords: Composite media, Diffusion, Random walk particle tracking (RWPT), Discontinuities, Analytical solutions, Porous materials, Zero flux

Hamza Oukili 1; Rachid Ababou 1; Gérald Debenest 1; Benoît Noetinger 2

1 Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France
2 IFP Energies nouvelles, Rueil-Malmaison, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Hamza Oukili and Rachid Ababou and G\'erald Debenest and Beno{\^\i}t Noetinger},
     title = {Multi-scale study of diffusion in composite grain{\textendash}pore systems based on particles random walk},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {529--558},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {3},
     year = {2021},
     doi = {10.5802/crmeca.94},
     language = {en},
AU  - Hamza Oukili
AU  - Rachid Ababou
AU  - Gérald Debenest
AU  - Benoît Noetinger
TI  - Multi-scale study of diffusion in composite grain–pore systems based on particles random walk
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 529
EP  - 558
VL  - 349
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.94
LA  - en
ID  - CRMECA_2021__349_3_529_0
ER  - 
%0 Journal Article
%A Hamza Oukili
%A Rachid Ababou
%A Gérald Debenest
%A Benoît Noetinger
%T Multi-scale study of diffusion in composite grain–pore systems based on particles random walk
%J Comptes Rendus. Mécanique
%D 2021
%P 529-558
%V 349
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmeca.94
%G en
%F CRMECA_2021__349_3_529_0
Hamza Oukili; Rachid Ababou; Gérald Debenest; Benoît Noetinger. Multi-scale study of diffusion in composite grain–pore systems based on particles random walk. Comptes Rendus. Mécanique, Volume 349 (2021) no. 3, pp. 529-558. doi : 10.5802/crmeca.94.

[1] S. Whitaker The Method of Volume Averaging, Theory and Applications of Transport in Porous Media, 13, Springer, Dordrecht, 1999

[2] M. Quintard; S. Whitaker One- and two-equation models for transient diffusion processes in two-phase systems, Advances in Heat Transfer, Volume 23, Academic Press, 1993, pp. 369-464 | DOI

[3] E. Sanchez-Palencia Homogenization method for the study of composite media, Asymptotic Analysis II, Springer, Berlin, Heidelberg, 1983, pp. 192-214 | Zbl

[4] C. Moyne; S. Didierjean; H. Amaral Souto; O. da Silveira Thermal dispersion inporous media: one-equation model, Int. J. Heat Mass Transfer, Volume 43 (2000), pp. 3853-3867 | DOI | Zbl

[5] H. Brenner Dispersion resulting from flow through spatially periodic porous media, Phil. Trans. R. Soc. Lond. A, Volume 297 (1980) no. 1430, pp. 81-133 | MR | Zbl

[6] J. L. Auriault; P. M. Adler Taylor dispersion in porous media: analysis by multiple scale expansions, Adv. Water Resour., Volume 18 (1995) no. 4, pp. 217-226 | DOI

[7] W. E. B. Engquist; X. Li; W. Ren; E. Vanden-Eijnden Heterogeneous multiscale methods: a review, Commun. Comput. Phys., Volume 2 (2007) no. 3, pp. 367-450 | MR | Zbl

[8] M. Vasilyeva; E. T. Chung; Y. Efendiev; A. Tyrylgin A three-level multi-continua upscaling method for flow problems in fractured porous media, Commun. Comput. Phys., Volume 27 (2020) no. 2, pp. 619-638 | DOI | MR | Zbl

[9] B. P. Muljadi; B. Bijeljic; M. J. Blunt; A. Colbourne; A. J. Sederman; M. D. Mantle; L. F. Gladden Modelling and upscaling of transport in carbonates during dissolution: validation and calibration with NMR experiments, J. Contam. Hydrol., Volume 212 (2018), pp. 85-95 | DOI

[10] A. J. Guttmann; T. Kennedy Self-avoiding walks in a rectangle, J. Eng. Math., Volume 84 (2014), pp. 201-208 | DOI | MR | Zbl

[11] H. Oukili; R. Ababou; G. Debenest; B. Noetinger Random Walks with negative particles for discontinuous diffusion and porosity, J. Comput. Phys., Volume 396 (2019), pp. 687-701 | DOI | MR | Zbl

[12] B. Noetinger; D. Roubinet; A. Russian; T. Le Borgne; F. Delay; M. Dentz et al. Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale, Transp. Porous Media, Volume 115 (2016) no. 2, pp. 345-385 | DOI | MR

[13] B. Noetinger; T. Estebenet Up-scaling of double porosity fractured media using continuous-time random walks methods, Transp. Porous Media, Volume 39 (2000) no. 3, pp. 315-337 | DOI

[14] B. Noetinger; T. Estebenet; M. Quintard Up-scaling flow in fractured media: equivalence between the large scale averaging theory and the continuous time random walk method, Transp. Porous Media, Volume 43 (2001) no. 3, pp. 581-596 | DOI | MR

[15] B. Noetinger; T. Estebenet; P. Landereau A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transp. Porous Media, Volume 44 (2001) no. 3, pp. 539-557 | DOI

[16] R. Mauri Heat and mass transport in random velocity fields with application to dispersion in porous media, J. Eng. Math., Volume 29 (1995), pp. 77-89 | DOI | MR | Zbl

[17] L. C. Evans Partial Differential Equations, American Mathematical Society, Providence, RI, 2010

[18] H. S. Carslaw; J. C. Jaeger Conduction of Heat in Solids, Clarendon, Oxford, 1959 | Zbl

[19] G. J. M. Uffink A random-walk method for the simulation of macrodispersion in a stratified aquifer, Relation of Groundwater Quality and Quantity (IAHS Publ.), Volume 146, Int. Assoc. of Hydrol. Sci., Gentbrugge, Belgium, 1985, pp. 103-114

[20] E. M. LaBolle; G. E. Fogg; A. F. B. Tompson Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods, Water Resour. Res., Volume 32 (1996) no. 3, pp. 583-593 | DOI

[21] P. Salamon; D. Fernandez-Garcia; J. J. Gomez-Hernandez A review and numerical assessment of the random walk particle tracking method, J. Contam. Hydrol., Volume 87 (2006) no. 3–4, pp. 277-305 | DOI

[22] M. Bechtold; J. Vanderborght; O. Ippisch; H. Vereecken Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents, Water Resour. Res., Volume 47 (2011), W10526 | DOI

[23] Y. Yong; X. Lou; S. Li; C. Yang; X. Yin Direct simulation of the influence of the pore structure on the diffusion process in porous media, Comput. Math. Appl., Volume 67 (2014) no. 2, pp. 412-423 | DOI | MR | Zbl

[24] J. A. Currie Gaseous diffusion in porous media: II. Dry granular materials, Br. J. Appl. Phys., Volume 11 (1960), pp. 318-324 | DOI

[25] R. J. Millington; J. P. Quirk Permeability of porous solids, Trans. Faraday Soc., Volume 57 (1961), pp. 1200-1207 | DOI

[26] D. Ryan; R. G. Carbonell; S. Whitaker A theory of diffusion and reaction in porous media, AIChE Symposium Series, No. 202 (P. Sfroeve; W. J. Ward, eds.), Volume 77, 1981, pp. 46-62

[27] J. C. Maxwell Treatise on Electricity and Magnetism, I, Clarendon Press, Oxford, 1881 | Zbl

[28] H. L. Weissberg; J. C. Maxwell Treatise on Electricity and Magnetism, I, Clarendon Press, Oxford, 1881 (“Effective diffusion coefficients in porous media”, J. Appl. Phys. 34 1963, p. 2636-2639)

[29] N. Wakao; J. M. Smith Diffusion in catalyst pellets, Chern. Eng. Sci., Volume 17 (1962), pp. 825-834 | DOI

[30] J. H. Kim; J. A. Ochoa; S. Whitaker Diffusion in anisotropic porous media, Transp. Porous Media, Volume 2 (1987) no. 4, pp. 327-356

[31] A. G. Hunt; M. Sahimi Flow, transport, and reaction in porous media: percolation scaling, critical-path analysis, and effective medium approximation, Rev. Geophys., Volume 55 (2017), pp. 993-1078 | DOI

Cited by Sources:

Comments - Policy