logo CRAS
Comptes Rendus. Mécanique

Note
On the physical interpretation of pseudo-plastic behaviour of polymers and prediction for various environmental conditions
Comptes Rendus. Mécanique, Tome 349 (2021) no. 3, pp. 465-484.

This paper reports the development of a theory allowing the prediction of the uniaxial mechanical behaviour of thermoplastics as a function of temperature and liquid absorption. This theory takes into account the influence of glass transition temperature and relies on physical phenomena like damage accumulation and molecular-chain motion in order to provide a better understanding of the microstructure changes during the solicitation and their influence on mechanical properties. The theory was validated on a neat polyphenylene sulfide (PPS) and provided good predictions and correlations with experimental data for every environmental configuration studied.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmeca.96
Mots clés : Polymers, Modelling, Temperature, Ageing, Glass transition, Damage, Molecular-chain network
@article{CRMECA_2021__349_3_465_0,
     author = {Quentin C. P. Bourgogne and Vanessa Bouchart and Pierre Chevrier},
     title = {On the physical interpretation of pseudo-plastic behaviour of polymers and prediction for various environmental conditions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {465--484},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {3},
     year = {2021},
     doi = {10.5802/crmeca.96},
     language = {en},
}
Quentin C. P. Bourgogne; Vanessa Bouchart; Pierre Chevrier. On the physical interpretation of pseudo-plastic behaviour of polymers and prediction for various environmental conditions. Comptes Rendus. Mécanique, Tome 349 (2021) no. 3, pp. 465-484. doi : 10.5802/crmeca.96. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.96/

[1] H. Piao et al. Influence of water absorption and temperature on the mechanical properties of discontinuous carbon fiber reinforced polyamide 6, Fibers Polym., Volume 20 (2019) no. 3, pp. 611-619

[2] A. D. Mulliken; M. C. Boyce Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct., Volume 43 (2006) no. 5, pp. 1331-1356

[3] A. Launay et al. Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide, Mech. Mater., Volume 56 (2013), pp. 1-10

[4] Q. C. Bourgogne; V. Bouchart; P. Chevrier; E. Dattoli Influence of temperature and cooling liquid immersion on the mechanical behavior of a PPS composite: experimental study and constitutive equations, SN Appl. Sci., Volume 2 (2020) no. 3, pp. 1-19

[5] Q. C. Bourgogne; V. Bouchart; P. Chevrier; E. Dattoli Numerical investigation of the fiber/matrix inter-phase damage of a PPS composite considering temperature and cooling liquid ageing, SN Appl. Sci., Volume 3 (2021) no. 1, pp. 1-15

[6] M. C. Boyce; S. Socrate; P. G. Llana Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition, Polymer, Volume 41 (2000) no. 6, pp. 2183-2201

[7] A. Krairi; I. Doghri A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage, Int. J. Plast., Volume 60 (2014), pp. 163-181

[8] A. Benaarbia; G. Chatzigeorgiou; B. Kiefer et al. A fully coupled thermo-viscoelastic-viscoplastic-damage framework to study the cyclic variability of the Taylor–Quinney coefficient for semi-crystalline polymers, Int. J. Mech. Sci., Volume 163 (2019), 105128

[9] Q. Guo; F. Zaïri; X. Guo A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples, Int. J. Plast., Volume 101 (2018), pp. 106-124

[10] Q. Guo; F. Zaïri; X. Guo A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part II: Experimental studies and parameter identification, Int. J. Plast., Volume 101 (2018), pp. 58-73

[11] J.-L. Bouvard et al. A general inelastic internal state variable model for amorphous glassy polymers, Acta Mech., Volume 213 (2010) no. 1, pp. 71-96

[12] N. Candau et al. Strain-induced network chains damage in carbon black filled EPDM, Polymer, Volume 175 (2019), pp. 329-338

[13] M. Eftekhari; A. Fatemi Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects, Polym. Test., Volume 51 (2016), pp. 151-164

[14] H. Benyahia; M. Tarfaoui; A. El Moumen; D. Ouinas; O. H. Hassoon Mechanical properties of offshoring polymer composite pipes at various temperatures, Compos. Part B: Eng., Volume 152 (2018), pp. 231-240

[15] V. Fabre et al. Time-temperature-water content equivalence on dynamic mechanical response of polyamide 6, 6, Polymer, Volume 137 (2018), pp. 22-29

[16] M. Eftekhari; A. Fatemi Tensile, creep and fatigue behaviours of short fibre reinforced polymer composites at elevated temperatures: a literature survey, Fatigue Fract. Eng. Mater. Struct., Volume 38 (2015) no. 12, pp. 1395-1418

[17] A. A. Abdel-Wahab; S. Ataya; V. V. Silberschmidt Temperature-dependent mechanical behaviour of PMMA: experimental analysis and modelling, Polym. Test., Volume 58 (2017), pp. 86-95

[18] A. Cohen A Padé approximant to the inverse Langevin function, Rheol. Acta, Volume 30 (1991), pp. 270-273

[19] P. Maimí; P. P. Camanho; J. A. Mayugo; C. G. Dávila A continuum damage model for composite laminates: Part I–Constitutive model, Mech. Mater., Volume 39 (2007) no. 10, pp. 897-908

[20] Y. Zhou; P. K. Mallick A non-linear damage model for the tensile behavior of an injection molded short E-glass fiber reinforced polyamide-6, 6, Mater. Sci. Eng.: A, Volume 393 (2005) no. 1–2, pp. 303-309

[21] N. S. J. Christopher et al. Thermal degradation of poly (phenylene sulfide) and perfluoropoly (phenylene sulfide), J. Appl. Polymer Sci., Volume 12 (1968) no. 4, pp. 863-870

[22] G. F. L. Ehlers; K. R. Fisch; W. R. Powell Thermal degradation of polymers with phenylene units in the chain. II. Sulfur-containing polyarylenes, J. Polymer Sci. Part A-1: Polym. Chem., Volume 7 (1969) no. 10, pp. 2955-2967

[23] A. Boubakri et al. Study of UV-aging of thermoplastic polyurethane material, Mater. Sci. Eng.: A, Volume 527 (2010) no. 7–8, pp. 1649-1654

[24] D. Notta-Cuvier et al. Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations, Mech. Mater., Volume 68 (2014), pp. 193-206

[25] D. Notta-Cuvier; F. Lauro; B. Bennani Modelling of progressive fibre/matrix debonding in short-fibre reinforced composites up to failure, Int. J. Solids Struct., Volume 66 (2015), pp. 140-150

[26] L. Riaño et al. Effect of interphase region on the elastic behavior of unidirectional glass-fiber/epoxy composites, Compos. Struct., Volume 198 (2018), pp. 109-116

[27] P. Zhang; W. Yao; X. Hu; X. Zhuang Phase field modelling of progressive failure in composites combined with cohesive element with an explicit scheme, Compos. Struct., Volume 262 (2021), 113353

[28] V. Srivastava; S. A. Chester; N. M. Ames; L. Anand A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast., Volume 26 (2010) no. 8, pp. 1138-1182