Comptes Rendus
Multiscale modeling of the effective viscoplastic behavior of Mg 2 SiO 4 wadsleyite: bridging atomic and polycrystal scales
Comptes Rendus. Mécanique, Volume 348 (2020) no. 10-11, pp. 827-846.

The viscoplastic behavior of polycrystalline Mg 2 SiO 4 wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.61
Keywords: Earth mantle, Multiscale modelling, Dislocations, Polycrystal, Viscoplasticity

O. Castelnau 1; K. Derrien 1; S. Ritterbex 2, 3; P. Carrez 3; P. Cordier 4, 3; H. Moulinec 5

1 Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l’Hopital, 75013 Paris, France
2 Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
3 Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
4 Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
5 Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2020__348_10-11_827_0,
     author = {O. Castelnau and K. Derrien and S. Ritterbex and P. Carrez and P. Cordier and H. Moulinec},
     title = {Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {827--846},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {10-11},
     year = {2020},
     doi = {10.5802/crmeca.61},
     language = {en},
}
TY  - JOUR
AU  - O. Castelnau
AU  - K. Derrien
AU  - S. Ritterbex
AU  - P. Carrez
AU  - P. Cordier
AU  - H. Moulinec
TI  - Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 827
EP  - 846
VL  - 348
IS  - 10-11
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.61
LA  - en
ID  - CRMECA_2020__348_10-11_827_0
ER  - 
%0 Journal Article
%A O. Castelnau
%A K. Derrien
%A S. Ritterbex
%A P. Carrez
%A P. Cordier
%A H. Moulinec
%T Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales
%J Comptes Rendus. Mécanique
%D 2020
%P 827-846
%V 348
%N 10-11
%I Académie des sciences, Paris
%R 10.5802/crmeca.61
%G en
%F CRMECA_2020__348_10-11_827_0
O. Castelnau; K. Derrien; S. Ritterbex; P. Carrez; P. Cordier; H. Moulinec. Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales. Comptes Rendus. Mécanique, Volume 348 (2020) no. 10-11, pp. 827-846. doi : 10.5802/crmeca.61. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/

[1] D. Song; P. Ponte Castañeda Fully optimized second-order homogenization estimates for the macroscopic response and texture evolution of low-symmetry viscoplastic polycrystals, Int. J. Plast., Volume 110 (2018), pp. 272-293 | DOI

[2] P. Suquet; H. Moulinec; O. Castelnau; M. Montagnat; N. Lahellec; F. Grennerat; P. Duval; R. Brenner Multiscale modeling of the mechanical behavior of polycrystalline ice under transient creep, Procedia IUTAM, Volume 3 (2012), pp. 64-78 | DOI

[3] H. Moulinec; P. Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl

[4] C. Denoual Modeling dislocation by coupling peierls-nabarro and element free galerkin methods, Comput. Methods Appl. Mech. Eng., Volume 96 (2007), pp. 1915-1923 | DOI | Zbl

[5] S. Ritterbex; P. Carrez; K. Gouriet; P. Cordier Modeling dislocation glide in MG 2 SiO 4 ringwoodite: towards rheology under transition zone conditions, Phys. Earth Planet. Int., Volume 248 (2015), pp. 20-28 | DOI

[6] S. Ritterbex; P. Carrez; P. Cordier Modeling dislocation glide and lattice friction in MG 2 SiO 4 waldseyite in conditions of the earth’s transition zone, Am. Mineralogist, Volume 101 (2016), pp. 2085-2094 | DOI

[7] P. Gilormini A critical evaluation for various nonlinear extensions of the self-consistent model, Proc. IUTAM Symp. on Micromechanics of Plasticity and Damage of Multiphase Materials (Sèvres, France) (A. Pineau; A. Zaoui, eds.), Kluwer Academic Publishers, 1995, pp. 67-74

[8] P. Gilormini Insuffisance de l’extension classique du modèle autocohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Volume 320 (1995) no. Ser. IIb, pp. 115-122 | Zbl

[9] P. Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. Part 1: Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757 | DOI | Zbl

[10] O. Castelnau; D. K. Blackman; R. A. Lebensohn; P. Ponte Castañeda Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res., Volume 113 (2008), B09202 | DOI

[11] O. Castelnau; R. A. Lebensohn; P. Ponte Castañeda; D. K. Blackman Earth mantle rheology inferred from homogenization theories, Multi-Scale Modeling of Heterogeneous Materials (O. Cazacu, ed.), John Wiley and Sons, 2008, pp. 55-70 | DOI

[12] O. Castelnau; P. Cordier; R. A. Lebensohn; S. Merkel; P. Raterron Microstructures and rheology of the earth’s upper mantle inferred from a multiscale approach, C. R. Phys., Volume 11 (2010), pp. 304-315 | DOI

[13] F. Detrez; O. Castelnau; P. Cordier; S. Merkel; P. Raterron Effective viscoplastic behavior of polycrystalline aggregates lacking four independent slip systems inferred from homogenization methods; application to olivine, J. Mech. Phys. Solids, Volume 83 (2015), pp. 199-220 | DOI | MR

[14] J. P. Montagner Deep earth structure - upper mantle structure: Global isotropic and anisotropic elastic tomography, Treatise on Geophysics (G. Schubert, ed.), Volume 1, Elsevier, Oxford, 2015, pp. 613-639 | DOI

[15] D. K. Blackman; D. E. Boyce; O. Castelnau; P. R. Dawson; G. Laske Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy, Geophys. J. Int., Volume 210 (2017) no. 3, pp. 1481-1493 | DOI

[16] N. M. Ribe; R. Hielsche; O. Castelnau An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals, Geophys. J. Int., Volume 216 (2019), pp. 486-514 | DOI

[17] O. Castelnau; D. K. Blackman; T. W. Becker Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow, Geophys. Res. Lett., Volume 36 (2009), L12304 | DOI

[18] A. Tommasi; D. Mainprice; P. Cordier; C. Thoraval; H. Couvy Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone, J. Geophys. Res., Volume 109 (2004) no. B12, B12405 | DOI

[19] R. A. Lebensohn; C. N. Tomé A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., Volume 41 (1993) no. 9, pp. 2611-2624 | DOI

[20] R. Masson; M. Bornert; P. Suquet; A. Zaoui An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1203-1226 | DOI | MR | Zbl

[21] M. I. Idiart; H. Moulinec; P. Ponte Castañeda; P. Suquet Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1029-1063 | DOI | MR | Zbl

[22] R. A. Lebensohn; P. Ponte Castañeda; R. Brenner; O. Castelnau Full-field versus homogenization methods to predict microstructure-property relations for polycrystalline materials, Chapter 11 of Computational Methods for Microstructure-Property Relationships (S. Ghosh; D. Dimiduk, eds.), Springer, 2011, pp. 393-441 | DOI

[23] P. Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71 | DOI | MR | Zbl

[24] Y. Liu; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for texture evolution in viscoplastic polycrystals, Acta Mater., Volume 51 (2003), pp. 5425-5437 | DOI

[25] Y. Liu; P. Gilormini; P. Ponte Castaneda Homogenization estimates for texture evolution in halite, Tectonophysics, Volume 406 (2003), pp. 179-195 | DOI

[26] M. V. Nebozhyn; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Méc., Volume 328 (2000) no. Ser. IIb, pp. 11-17 | Zbl

[27] M. Idiart; P. Ponte Castañeda Field statistics in nonlinear composites. I. Theory, Proc. R. Soc. Lond. A, Volume 463 (2007), pp. 183-202 | MR | Zbl

[28] P. Ponte Castañeda Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites, Proc. R. Soc. Lond. A, Volume 471 (2015) no. 2184, 20150665 | MR | Zbl

[29] Shuvrangsu Das; P. Ponte Castañeda A multiphase homogenization model for the viscoplastic response of intact sea ice: the effect of porosity and crystallographic texture, J. Multiscale Comput. Eng., Volume 17 (2019), pp. 121-150

[30] A. Metsue; P. Carrez; C. Denoual; D. Mainprice; P. Cordier Plastic deformation of wadsleyite: Iv dislocation core modelling based on the peierls-nabarro-galerkin model, Acta Mater., Volume 58 (2010) no. 5, pp. 1467-1478 | DOI

[31] H. Koizumi; H. O. K. Kirchner; T. Suzuki Kink pair nucleation and critical shear stress, Acta Metall. Mater., Volume 41 (1993), pp. 3483-3493 | DOI

[32] S. Ritterbex; P. Hirel; P. Carrez On low temperature glide of dissociated < 110 > dislocations in strontium titanate, Philos. Mag., Volume 98 (2018) no. 15, pp. 1397-1411 | DOI

[33] J. W. Hutchinson Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans., Volume 8A (1977) no. 9, pp. 1465-1469 | DOI

[34] P. Ponte Castañeda; P. Suquet Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302 | DOI | Zbl

[35] T. Kanit; S. Forest; I. Galliet; V. Mounoury; D. Jeulin Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003), pp. 3647-3679 | DOI | Zbl

[36] G. Cailletaud; S. Forest; D. Jeulin; F. Feyel; I. Galliet; V. Mounoury; S. Quilici Some elements of microstructural mechanics, Comput. Mater. Sci., Volume 27 (2003), pp. 351-374 | DOI

[37] F. Grennerat; M. Montagnat; P. Duval; O. Castelnau nd; P. Vacher Intragranular strain field in columnar ice during transient creep, Acta Mater., Volume 60 (2012) no. 8, pp. 3655-3666 | DOI

[38] Y. Nishihara; D. Tinker; T. Kawazoe; Y. Xu; Z. Jing; K. N. Matsukage; S.-I. Karato Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational drickamer apparatus (rda), Phys. Earth Planet. Int., Volume 170 (2008) no. 3, pp. 156-169 (Frontiers and Grand Challenges in Mineral Physics of the Deep Mantle) | DOI

[39] T. Kawazoe; S.-I. Karato; J. Ando; Z. Jing; K. Otsukaand; J. W. Hustoft Shear deformation of polycrystalline wadsleyite up to 2100 k at 14–17 gpa using a rotational drickamer apparatus (rda), J. Geophys. Res., Volume 115 (2010), pp. 1-11 | DOI

[40] J. Hustoft; G. Amulele; J.-I. Ando; K. Otsuka; Z. Du; Z. Jin; S.-I. Karato Plastic deformation experiments to high strain on mantle transition zoneminerals wadsleyite and ringwoodite in the rotational drickamer apparatus, Earth Planet. Sci. Lett., Volume 361 (2013), pp. 7-15 | DOI

[41] R. Farla; G. Amulele; J. Girard; N. Miyajima; S.-I. Karato High-pressure and high-temperature deformation experiments on polycrystalline wadsleyite using the rotational drickamer apparatus, Phys. Chem. Miner., Volume 42 (2015), pp. 541-558 | DOI

[42] S. Ritterbex; P. Carrez; P. Cordier Deformation across the mantle transition zone: A theoretical mineral physics view, Earth Planet. Sci. Lett., Volume 547 (2020), 116438 | DOI

[43] J. D. Cotton; M. J. Kaufman A simplified method for determining the number of independent slip systems in crystals, Scripta Metal. Mater., Volume 25 (1991), pp. 2395-2398 | DOI

[44] R. Brenner; O. Castelnau; L. Badea Mechanical field fluctuations in polycrystals estimated by homogenization techniques, Proc. R. Soc. Lond. A, Volume 460 (2004) no. 2052, pp. 3589-3612 | DOI | MR | Zbl

[45] R. A. Lebensohn; C. N. Tomé; P. Ponte Castañeda Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating field fluctuations, Philos. Mag., Volume 87 (2007) no. 28, pp. 4287-4322 | DOI

[46] R. Brenner; R. L. Lebensohn; O. Castelnau Elastic anisotropy and yield surface estimates, Int. J. Solids Struct., Volume 46 (2009), pp. 3018-3026 | DOI | Zbl

Cited by Sources:

Comments - Policy