The viscoplastic behavior of polycrystalline wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.
Revised:
Accepted:
Published online:
O. Castelnau 1; K. Derrien 1; S. Ritterbex 2, 3; P. Carrez 3; P. Cordier 4, 3; H. Moulinec 5
@article{CRMECA_2020__348_10-11_827_0, author = {O. Castelnau and K. Derrien and S. Ritterbex and P. Carrez and P. Cordier and H. Moulinec}, title = {Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales}, journal = {Comptes Rendus. M\'ecanique}, pages = {827--846}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {10-11}, year = {2020}, doi = {10.5802/crmeca.61}, language = {en}, }
TY - JOUR AU - O. Castelnau AU - K. Derrien AU - S. Ritterbex AU - P. Carrez AU - P. Cordier AU - H. Moulinec TI - Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales JO - Comptes Rendus. Mécanique PY - 2020 SP - 827 EP - 846 VL - 348 IS - 10-11 PB - Académie des sciences, Paris DO - 10.5802/crmeca.61 LA - en ID - CRMECA_2020__348_10-11_827_0 ER -
%0 Journal Article %A O. Castelnau %A K. Derrien %A S. Ritterbex %A P. Carrez %A P. Cordier %A H. Moulinec %T Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales %J Comptes Rendus. Mécanique %D 2020 %P 827-846 %V 348 %N 10-11 %I Académie des sciences, Paris %R 10.5802/crmeca.61 %G en %F CRMECA_2020__348_10-11_827_0
O. Castelnau; K. Derrien; S. Ritterbex; P. Carrez; P. Cordier; H. Moulinec. Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales. Comptes Rendus. Mécanique, Volume 348 (2020) no. 10-11, pp. 827-846. doi : 10.5802/crmeca.61. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/
[1] Fully optimized second-order homogenization estimates for the macroscopic response and texture evolution of low-symmetry viscoplastic polycrystals, Int. J. Plast., Volume 110 (2018), pp. 272-293 | DOI
[2] Multiscale modeling of the mechanical behavior of polycrystalline ice under transient creep, Procedia IUTAM, Volume 3 (2012), pp. 64-78 | DOI
[3] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl
[4] Modeling dislocation by coupling peierls-nabarro and element free galerkin methods, Comput. Methods Appl. Mech. Eng., Volume 96 (2007), pp. 1915-1923 | DOI | Zbl
[5] Modeling dislocation glide in MGSiO ringwoodite: towards rheology under transition zone conditions, Phys. Earth Planet. Int., Volume 248 (2015), pp. 20-28 | DOI
[6] Modeling dislocation glide and lattice friction in waldseyite in conditions of the earth’s transition zone, Am. Mineralogist, Volume 101 (2016), pp. 2085-2094 | DOI
[7] A critical evaluation for various nonlinear extensions of the self-consistent model, Proc. IUTAM Symp. on Micromechanics of Plasticity and Damage of Multiphase Materials (Sèvres, France) (A. Pineau; A. Zaoui, eds.), Kluwer Academic Publishers, 1995, pp. 67-74
[8] Insuffisance de l’extension classique du modèle autocohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Volume 320 (1995) no. Ser. IIb, pp. 115-122 | Zbl
[9] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. Part 1: Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757 | DOI | Zbl
[10] Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res., Volume 113 (2008), B09202 | DOI
[11] Earth mantle rheology inferred from homogenization theories, Multi-Scale Modeling of Heterogeneous Materials (O. Cazacu, ed.), John Wiley and Sons, 2008, pp. 55-70 | DOI
[12] Microstructures and rheology of the earth’s upper mantle inferred from a multiscale approach, C. R. Phys., Volume 11 (2010), pp. 304-315 | DOI
[13] Effective viscoplastic behavior of polycrystalline aggregates lacking four independent slip systems inferred from homogenization methods; application to olivine, J. Mech. Phys. Solids, Volume 83 (2015), pp. 199-220 | DOI | MR
[14] Deep earth structure - upper mantle structure: Global isotropic and anisotropic elastic tomography, Treatise on Geophysics (G. Schubert, ed.), Volume 1, Elsevier, Oxford, 2015, pp. 613-639 | DOI
[15] Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy, Geophys. J. Int., Volume 210 (2017) no. 3, pp. 1481-1493 | DOI
[16] An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals, Geophys. J. Int., Volume 216 (2019), pp. 486-514 | DOI
[17] Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow, Geophys. Res. Lett., Volume 36 (2009), L12304 | DOI
[18] Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone, J. Geophys. Res., Volume 109 (2004) no. B12, B12405 | DOI
[19] A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., Volume 41 (1993) no. 9, pp. 2611-2624 | DOI
[20] An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1203-1226 | DOI | MR | Zbl
[21] Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1029-1063 | DOI | MR | Zbl
[22] Full-field versus homogenization methods to predict microstructure-property relations for polycrystalline materials, Chapter 11 of Computational Methods for Microstructure-Property Relationships (S. Ghosh; D. Dimiduk, eds.), Springer, 2011, pp. 393-441 | DOI
[23] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71 | DOI | MR | Zbl
[24] Variational self-consistent estimates for texture evolution in viscoplastic polycrystals, Acta Mater., Volume 51 (2003), pp. 5425-5437 | DOI
[25] Homogenization estimates for texture evolution in halite, Tectonophysics, Volume 406 (2003), pp. 179-195 | DOI
[26] Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Méc., Volume 328 (2000) no. Ser. IIb, pp. 11-17 | Zbl
[27] Field statistics in nonlinear composites. I. Theory, Proc. R. Soc. Lond. A, Volume 463 (2007), pp. 183-202 | MR | Zbl
[28] Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites, Proc. R. Soc. Lond. A, Volume 471 (2015) no. 2184, 20150665 | MR | Zbl
[29] A multiphase homogenization model for the viscoplastic response of intact sea ice: the effect of porosity and crystallographic texture, J. Multiscale Comput. Eng., Volume 17 (2019), pp. 121-150
[30] Plastic deformation of wadsleyite: Iv dislocation core modelling based on the peierls-nabarro-galerkin model, Acta Mater., Volume 58 (2010) no. 5, pp. 1467-1478 | DOI
[31] Kink pair nucleation and critical shear stress, Acta Metall. Mater., Volume 41 (1993), pp. 3483-3493 | DOI
[32] On low temperature glide of dissociated 110 dislocations in strontium titanate, Philos. Mag., Volume 98 (2018) no. 15, pp. 1397-1411 | DOI
[33] Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans., Volume 8A (1977) no. 9, pp. 1465-1469 | DOI
[34] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302 | DOI | Zbl
[35] Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003), pp. 3647-3679 | DOI | Zbl
[36] Some elements of microstructural mechanics, Comput. Mater. Sci., Volume 27 (2003), pp. 351-374 | DOI
[37] Intragranular strain field in columnar ice during transient creep, Acta Mater., Volume 60 (2012) no. 8, pp. 3655-3666 | DOI
[38] Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational drickamer apparatus (rda), Phys. Earth Planet. Int., Volume 170 (2008) no. 3, pp. 156-169 (Frontiers and Grand Challenges in Mineral Physics of the Deep Mantle) | DOI
[39] Shear deformation of polycrystalline wadsleyite up to 2100 k at 14–17 gpa using a rotational drickamer apparatus (rda), J. Geophys. Res., Volume 115 (2010), pp. 1-11 | DOI
[40] Plastic deformation experiments to high strain on mantle transition zoneminerals wadsleyite and ringwoodite in the rotational drickamer apparatus, Earth Planet. Sci. Lett., Volume 361 (2013), pp. 7-15 | DOI
[41] High-pressure and high-temperature deformation experiments on polycrystalline wadsleyite using the rotational drickamer apparatus, Phys. Chem. Miner., Volume 42 (2015), pp. 541-558 | DOI
[42] Deformation across the mantle transition zone: A theoretical mineral physics view, Earth Planet. Sci. Lett., Volume 547 (2020), 116438 | DOI
[43] A simplified method for determining the number of independent slip systems in crystals, Scripta Metal. Mater., Volume 25 (1991), pp. 2395-2398 | DOI
[44] Mechanical field fluctuations in polycrystals estimated by homogenization techniques, Proc. R. Soc. Lond. A, Volume 460 (2004) no. 2052, pp. 3589-3612 | DOI | MR | Zbl
[45] Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating field fluctuations, Philos. Mag., Volume 87 (2007) no. 28, pp. 4287-4322 | DOI
[46] Elastic anisotropy and yield surface estimates, Int. J. Solids Struct., Volume 46 (2009), pp. 3018-3026 | DOI | Zbl
Cited by Sources:
Comments - Policy