The viscoplastic behavior of polycrystalline
Révisé le :
Accepté le :
Publié le :
O. Castelnau 1 ; K. Derrien 1 ; S. Ritterbex 2, 3 ; P. Carrez 3 ; P. Cordier 4, 3 ; H. Moulinec 5

@article{CRMECA_2020__348_10-11_827_0, author = {O. Castelnau and K. Derrien and S. Ritterbex and P. Carrez and P. Cordier and H. Moulinec}, title = {Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales}, journal = {Comptes Rendus. M\'ecanique}, pages = {827--846}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {10-11}, year = {2020}, doi = {10.5802/crmeca.61}, language = {en}, }
TY - JOUR AU - O. Castelnau AU - K. Derrien AU - S. Ritterbex AU - P. Carrez AU - P. Cordier AU - H. Moulinec TI - Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales JO - Comptes Rendus. Mécanique PY - 2020 SP - 827 EP - 846 VL - 348 IS - 10-11 PB - Académie des sciences, Paris DO - 10.5802/crmeca.61 LA - en ID - CRMECA_2020__348_10-11_827_0 ER -
%0 Journal Article %A O. Castelnau %A K. Derrien %A S. Ritterbex %A P. Carrez %A P. Cordier %A H. Moulinec %T Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales %J Comptes Rendus. Mécanique %D 2020 %P 827-846 %V 348 %N 10-11 %I Académie des sciences, Paris %R 10.5802/crmeca.61 %G en %F CRMECA_2020__348_10-11_827_0
O. Castelnau; K. Derrien; S. Ritterbex; P. Carrez; P. Cordier; H. Moulinec. Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales. Comptes Rendus. Mécanique, Contributions in mechanics of materials, Volume 348 (2020) no. 10-11, pp. 827-846. doi : 10.5802/crmeca.61. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/
[1] Fully optimized second-order homogenization estimates for the macroscopic response and texture evolution of low-symmetry viscoplastic polycrystals, Int. J. Plast., Volume 110 (2018), pp. 272-293 | DOI
[2] Multiscale modeling of the mechanical behavior of polycrystalline ice under transient creep, Procedia IUTAM, Volume 3 (2012), pp. 64-78 | DOI
[3] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl
[4] Modeling dislocation by coupling peierls-nabarro and element free galerkin methods, Comput. Methods Appl. Mech. Eng., Volume 96 (2007), pp. 1915-1923 | DOI | Zbl
[5] Modeling dislocation glide in MG
[6] Modeling dislocation glide and lattice friction in
[7] A critical evaluation for various nonlinear extensions of the self-consistent model, Proc. IUTAM Symp. on Micromechanics of Plasticity and Damage of Multiphase Materials (Sèvres, France) (A. Pineau; A. Zaoui, eds.), Kluwer Academic Publishers, 1995, pp. 67-74
[8] Insuffisance de l’extension classique du modèle autocohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Volume 320 (1995) no. Ser. IIb, pp. 115-122 | Zbl
[9] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. Part 1: Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757 | DOI | Zbl
[10] Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res., Volume 113 (2008), B09202 | DOI
[11] Earth mantle rheology inferred from homogenization theories, Multi-Scale Modeling of Heterogeneous Materials (O. Cazacu, ed.), John Wiley and Sons, 2008, pp. 55-70 | DOI
[12] Microstructures and rheology of the earth’s upper mantle inferred from a multiscale approach, C. R. Phys., Volume 11 (2010), pp. 304-315 | DOI
[13] Effective viscoplastic behavior of polycrystalline aggregates lacking four independent slip systems inferred from homogenization methods; application to olivine, J. Mech. Phys. Solids, Volume 83 (2015), pp. 199-220 | DOI | MR
[14] Deep earth structure - upper mantle structure: Global isotropic and anisotropic elastic tomography, Treatise on Geophysics (G. Schubert, ed.), Volume 1, Elsevier, Oxford, 2015, pp. 613-639 | DOI
[15] Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy, Geophys. J. Int., Volume 210 (2017) no. 3, pp. 1481-1493 | DOI
[16] An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals, Geophys. J. Int., Volume 216 (2019), pp. 486-514 | DOI
[17] Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow, Geophys. Res. Lett., Volume 36 (2009), L12304 | DOI
[18] Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone, J. Geophys. Res., Volume 109 (2004) no. B12, B12405 | DOI
[19] A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., Volume 41 (1993) no. 9, pp. 2611-2624 | DOI
[20] An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1203-1226 | DOI | MR | Zbl
[21] Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1029-1063 | DOI | MR | Zbl
[22] Full-field versus homogenization methods to predict microstructure-property relations for polycrystalline materials, Chapter 11 of Computational Methods for Microstructure-Property Relationships (S. Ghosh; D. Dimiduk, eds.), Springer, 2011, pp. 393-441 | DOI
[23] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71 | DOI | MR | Zbl
[24] Variational self-consistent estimates for texture evolution in viscoplastic polycrystals, Acta Mater., Volume 51 (2003), pp. 5425-5437 | DOI
[25] Homogenization estimates for texture evolution in halite, Tectonophysics, Volume 406 (2003), pp. 179-195 | DOI
[26] Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Méc., Volume 328 (2000) no. Ser. IIb, pp. 11-17 | Zbl
[27] Field statistics in nonlinear composites. I. Theory, Proc. R. Soc. Lond. A, Volume 463 (2007), pp. 183-202 | MR | Zbl
[28] Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites, Proc. R. Soc. Lond. A, Volume 471 (2015) no. 2184, 20150665 | MR | Zbl
[29] A multiphase homogenization model for the viscoplastic response of intact sea ice: the effect of porosity and crystallographic texture, J. Multiscale Comput. Eng., Volume 17 (2019), pp. 121-150
[30] Plastic deformation of wadsleyite: Iv dislocation core modelling based on the peierls-nabarro-galerkin model, Acta Mater., Volume 58 (2010) no. 5, pp. 1467-1478 | DOI
[31] Kink pair nucleation and critical shear stress, Acta Metall. Mater., Volume 41 (1993), pp. 3483-3493 | DOI
[32] On low temperature glide of dissociated
[33] Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans., Volume 8A (1977) no. 9, pp. 1465-1469 | DOI
[34] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302 | DOI | Zbl
[35] Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003), pp. 3647-3679 | DOI | Zbl
[36] Some elements of microstructural mechanics, Comput. Mater. Sci., Volume 27 (2003), pp. 351-374 | DOI
[37] Intragranular strain field in columnar ice during transient creep, Acta Mater., Volume 60 (2012) no. 8, pp. 3655-3666 | DOI
[38] Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational drickamer apparatus (rda), Phys. Earth Planet. Int., Volume 170 (2008) no. 3, pp. 156-169 (Frontiers and Grand Challenges in Mineral Physics of the Deep Mantle) | DOI
[39] Shear deformation of polycrystalline wadsleyite up to 2100 k at 14–17 gpa using a rotational drickamer apparatus (rda), J. Geophys. Res., Volume 115 (2010), pp. 1-11 | DOI
[40] Plastic deformation experiments to high strain on mantle transition zoneminerals wadsleyite and ringwoodite in the rotational drickamer apparatus, Earth Planet. Sci. Lett., Volume 361 (2013), pp. 7-15 | DOI
[41] High-pressure and high-temperature deformation experiments on polycrystalline wadsleyite using the rotational drickamer apparatus, Phys. Chem. Miner., Volume 42 (2015), pp. 541-558 | DOI
[42] Deformation across the mantle transition zone: A theoretical mineral physics view, Earth Planet. Sci. Lett., Volume 547 (2020), 116438 | DOI
[43] A simplified method for determining the number of independent slip systems in crystals, Scripta Metal. Mater., Volume 25 (1991), pp. 2395-2398 | DOI
[44] Mechanical field fluctuations in polycrystals estimated by homogenization techniques, Proc. R. Soc. Lond. A, Volume 460 (2004) no. 2052, pp. 3589-3612 | DOI | MR | Zbl
[45] Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating field fluctuations, Philos. Mag., Volume 87 (2007) no. 28, pp. 4287-4322 | DOI
[46] Elastic anisotropy and yield surface estimates, Int. J. Solids Struct., Volume 46 (2009), pp. 3018-3026 | DOI | Zbl
- Evidence of Dislocation Mixed Climb in Quartz From the Main Central and Moine Thrusts: An Electron Tomography Study, Journal of Geophysical Research: Solid Earth, Volume 129 (2024) no. 7 | DOI:10.1029/2024jb029083
- Twinning in hydrous wadsleyite: Symmetry relations, origin, and consequences, American Mineralogist, Volume 108 (2023) no. 11, p. 2096 | DOI:10.2138/am-2022-8596
- Deformation Mechanisms, Microstructures, and Seismic Anisotropy of Wadsleyite in the Earth's Transition Zone, Geochemistry, Geophysics, Geosystems, Volume 24 (2023) no. 11 | DOI:10.1029/2023gc011026
- Periclase deforms more slowly than bridgmanite under mantle conditions, Nature, Volume 613 (2023) no. 7943, p. 303 | DOI:10.1038/s41586-022-05410-9
- Application of electron tomography of dislocations in beam-sensitive quartz to the determination of strain components, Tectonophysics, Volume 803 (2021), p. 228754 | DOI:10.1016/j.tecto.2021.228754
Cité par 5 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier