Weakly nonlinear composite conductors are characterized by position-dependent dissipation potentials expressible as an additive composition of a quadratic potential and a nonquadratic potential weighted by a small parameter. This additive form carries over to the effective dissipation potential of the composite when expanded to first order in the small parameter. However, the first-order correction of this asymptotic expansion depends only on the zeroth-order values of the local fields, namely, the local fields within the perfectly linear composite conductor. This asymptotic expansion is exploited to derive the exact effective conductivity of a composite cylinder assemblage exhibiting weak nonlinearity of the power-law type (i.e., power law with exponent
Révisé le :
Accepté le :
Publié le :
Joshua Furer 1 ; Martin Idiart 2, 3 ; Pedro Ponte Castañeda 4, 1

@article{CRMECA_2020__348_10-11_893_0, author = {Joshua Furer and Martin Idiart and Pedro Ponte Casta\~neda}, title = {Exact results for weakly nonlinear composites and implications for homogenization methods}, journal = {Comptes Rendus. M\'ecanique}, pages = {893--909}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {10-11}, year = {2020}, doi = {10.5802/crmeca.66}, language = {en}, }
TY - JOUR AU - Joshua Furer AU - Martin Idiart AU - Pedro Ponte Castañeda TI - Exact results for weakly nonlinear composites and implications for homogenization methods JO - Comptes Rendus. Mécanique PY - 2020 SP - 893 EP - 909 VL - 348 IS - 10-11 PB - Académie des sciences, Paris DO - 10.5802/crmeca.66 LA - en ID - CRMECA_2020__348_10-11_893_0 ER -
%0 Journal Article %A Joshua Furer %A Martin Idiart %A Pedro Ponte Castañeda %T Exact results for weakly nonlinear composites and implications for homogenization methods %J Comptes Rendus. Mécanique %D 2020 %P 893-909 %V 348 %N 10-11 %I Académie des sciences, Paris %R 10.5802/crmeca.66 %G en %F CRMECA_2020__348_10-11_893_0
Joshua Furer; Martin Idiart; Pedro Ponte Castañeda. Exact results for weakly nonlinear composites and implications for homogenization methods. Comptes Rendus. Mécanique, Contributions in mechanics of materials, Volume 348 (2020) no. 10-11, pp. 893-909. doi : 10.5802/crmeca.66. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.66/
[1] A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK, 1873 | Zbl
[2] Estimations fines des coefficients homogénéisés, Ennio de Giorgi Colloquium (P. Krée, ed.) (Research Notes in Math.), Volume 125, Pitman Publishing Ltd., London, 1985, pp. 168-187 | Zbl
[3] Homogenization and optimal bounds in linear elasticity, Arch. Ration. Mech. Anal., Volume 94 (1986), pp. 307-334 | DOI | MR | Zbl
[4] The Pólya-Szegó matrices in asymptotic models of dilute composites, Eur. J. Appl. Math., Volume 8 (1997), pp. 595-621 | DOI | Zbl
[5] A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., Volume 33 (1962), pp. 3125-3131 | DOI | Zbl
[6] Sphere assemblage model for polycrystals and symmetric materials, J. Appl. Phys., Volume 54 (1983), pp. 1380-1382 | DOI
[7] Realizable compressibility and conductivity in isotropic two-phase composites, C. R. Acad. Sci. Paris IIb–Mech., Volume 329 (2001), pp. 851-855 | Zbl
[8] Neutral coated inclusions in conductivity and anti-plane elasticity, Proc. R. Soc. Lond. A, Volume 457 (2001), pp. 1973-1997 | DOI | MR | Zbl
[9] Conductivity of a two-dimensional two-phase system, Zh. Eksp. Teor. Fiz., Volume 59 (1970), pp. 110-115
[10] Heat conduction of checkerboard structures, Vestnik Moskov. Univ. Ser. I Mat. Mekh., Volume 40 (1985), pp. 56-63 | MR
[11] Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys., Volume 416 (1935), pp. 636-664 | DOI
[12] Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math., Volume 47 (1987), pp. 1216-1228 | DOI | MR | Zbl
[13] Multiphase conductors realizing Aleksandrov’s mean, SIAM J. Appl. Math., Volume 76 (2016), pp. 1792-1798 | DOI | MR | Zbl
[14] The nearly isotropic behaviour of high-rank nonlinear sequentially laminated composites, Proc. R. Soc. Lond. A, Volume 459 (2003), pp. 157-174 | DOI | MR
[15] Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates, J. Mech. Phys. Solids, Volume 56 (2008), pp. 2599-2617 | DOI | MR | Zbl
[16] Duality relations for nonlinear incompressible two-dimensional elasticity, Proc. R. Soc. Edinb., Volume 131A (2001), pp. 351-369 | DOI | MR | Zbl
[17] A self-consistent analysis of the stiffening effect of rigid inclusions on a power-law material, J. Eng. Mater. Technol., Volume 106 (1984), pp. 317-321 | DOI
[18] An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids, J. Appl. Mech., Volume 77 (2010), 021016 | DOI
[19] Effective medium theory for weakly nonlinear composites, Phys. Rev. B, Volume 38 (1988), pp. 10970-10973 | DOI
[20] Weakly nonlinear composites of random composites: a series expansion approach, J. Statist. Phys., Volume 82 (1995), pp. 1327-1344 | DOI
[21] Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., Volume 90 (1998), pp. 159-189 | DOI | MR | Zbl
[22] Field distributions and effective-medium approximation for weakly nonlinear media, Phys. Rev. B, Volume 61 (2000), pp. 9365-9372 | DOI
[23] The overall response of composite materials, ASME J. Appl. Mech., Volume 50 (1983), pp. 1202-1209 | DOI | Zbl
[24] A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140 | DOI | Zbl
[25] Variational principles for inhomogeneous nonlinear media, IMA J. Appl. Math., Volume 35 (1985), pp. 39-54 | DOI | MR | Zbl
[26] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71 | DOI | MR | Zbl
[27] Bounds and estimates for the properties of nonlinear heterogeneous systems, Phil. Trans. R. Soc. Lond. A, Volume 340 (1992), pp. 531-567 | MR | Zbl
[28] Overall potentials and extremal surfaces of power law or ideally plastic materials, J. Mech. Phys. Solids, Volume 41 (1993), pp. 981-1002 | DOI | Zbl
[29] A shortcoming of the classical nonlinear extension of the self-consistent model, C. R. Acad. Sci. Paris IIb–Mech., Volume 320 (1995), pp. 115-122 | Zbl
[30] Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, Volume 13 (1965), pp. 89-101 | DOI | Zbl
[31] Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. Lond. A, Volume 348 (1976), pp. 101-127 | Zbl
[32] Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls, Z. Phys., Volume 151 (1958), pp. 504-518 | DOI
[33] Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure, C. R. Acad. Sci. Paris II, Volume 320 (1995), pp. 563-571 | Zbl
[34] Small-contrast perturbation expansions for the effective properties of nonlinear composites, C. R. Acad. Sci. Paris II, Volume 317 (1993), pp. 1515-1522 | Zbl
[35] Exact second-order estimates for the effective mechanical properties of nonlinear composites, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862 | DOI | MR | Zbl
[36] Stationary variational estimates for the effective response and field fluctuations in nonlinear composites, J. Mech. Phys. Solids, Volume 96 (2016), pp. 660-682 | DOI | MR
[37] Field statistics in nonlinear composites. I. Theory, Proc. R. Soc. A, Volume 463 (2007), pp. 183-202 | DOI | MR | Zbl
[38] A symmetric fully optimized second-order method for nonlinear homogenization, Z. Angew. Math. Mech., Volume 98 (2018), pp. 222-254 | DOI | MR
[39] Variational estimates for the overall response of an inhomogeneous nonlinear dielectric, Homogenization and Effective Moduli of Materials and Media (J. L. Ericksen, ed.), Springer-Verlag, New York, 1986, pp. 247-263 | DOI | Zbl
[40] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302 | DOI | Zbl
[41] The Theory of Composites, Cambridge University Press, Cambridge, UK, 2002 | Zbl
[42] Estimates for two-phase nonlinear conductors via iterated homogenization, Proc. R. Soc. A, Volume 469 (2013), 20120626 | DOI | MR | Zbl
[43] Effective properties of nonlinear inhomogeneous dielectrics, Phys. Rev. B, Volume 46 (1992), pp. 4387-4394 | DOI
[44] Nonlinear electrical conductivity in heterogeneous media, Proc. R. Soc. Lond. A, Volume 453 (1997), pp. 793-816 | DOI | MR | Zbl
[45] On the optimality of the variational linear comparison bounds for porous viscoplastic materials, J. Mech. Phys. Solids, Volume 138 (2020), 103898 | DOI | MR
[46] Effective potentials in nonlinear polycrystals and quadrature formulae, Proc. R. Soc. Lond. A, Volume 473 (2017), 20170213 | MR | Zbl
[47] Table of Integrals, Series, and Products, Academic Press, London, UK, 1994 | Zbl
Cité par Sources :
Commentaires - Politique