[Un modèle d'homogénéisation pour les matériaux poreux viscoplastiques bi-dimensionnels]
On propose un modèle approximatif fondé sur la méthode d'homogénéisation non-linéaire dite du « second-ordre » pour estimer le comportement effectif des matériaux poreux viscoplastiques isotropes transverses. Le modèle est construit de manière à reproduire exactement le comportement hydrostatique des « assemblages de cylindres composites », c'est-à-dire la limite hydrostatique des matériaux poreux plastiques fournie par le critère de Gurson. Par conséquent, le nouveau modèle améliore les estimations de « second-ordre » existantes, qui se sont avérées excessivement raides aux triaxialités et aux non-linéarités suffisamment élevées. Le modèle proposé est comparé aux résultats exacts obtenus pour une classe particulière de matériaux poreux présentant des microstructures séquentiellement stratifiées. L'accord s'avère excellent pour la gamme entière des triaxialités, ainsi que pour toutes les valeurs de la porosité et de l'exposant caractérisant la non-linéarité du comportement.
An approximate model based on the so-called ‘second-order’ nonlinear homogenization method is proposed to estimate the effective behavior of viscoplastic porous materials exhibiting transversely isotropic symmetry. The model is constructed in such a way that it reproduces exactly the behavior of a ‘composite-cylinder assemblage’ in the limit of in-plane hydrostatic loading, and therefore coincides with the hydrostatic limit of Gurson's criterion for plastic porous materials. As a consequence, the new model improves on earlier ‘second-order’ homogenization estimates, which have been found to be overly stiff at sufficiently high triaxialities and nonlinearities. The proposed model is compared with exact results obtained for a special class of porous materials with sequentially laminated microstructures. The agreement is found to be excellent for the entire range of stress triaxialities, and all values of the porosity and nonlinearity considered.
Mot clés : Milieux poreux, Homogénéisation, Composites non-linéaires, Critère de Gurson
Kostas Danas 1, 2 ; Martin I. Idiart 1, 2 ; Pedro Ponte Castañeda 1, 2
@article{CRMECA_2008__336_1-2_79_0, author = {Kostas Danas and Martin I. Idiart and Pedro Ponte Casta\~neda}, title = {A homogenization-based constitutive model for two-dimensional viscoplastic porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {79--90}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.10.017}, language = {en}, }
TY - JOUR AU - Kostas Danas AU - Martin I. Idiart AU - Pedro Ponte Castañeda TI - A homogenization-based constitutive model for two-dimensional viscoplastic porous media JO - Comptes Rendus. Mécanique PY - 2008 SP - 79 EP - 90 VL - 336 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2007.10.017 LA - en ID - CRMECA_2008__336_1-2_79_0 ER -
%0 Journal Article %A Kostas Danas %A Martin I. Idiart %A Pedro Ponte Castañeda %T A homogenization-based constitutive model for two-dimensional viscoplastic porous media %J Comptes Rendus. Mécanique %D 2008 %P 79-90 %V 336 %N 1-2 %I Elsevier %R 10.1016/j.crme.2007.10.017 %G en %F CRMECA_2008__336_1-2_79_0
Kostas Danas; Martin I. Idiart; Pedro Ponte Castañeda. A homogenization-based constitutive model for two-dimensional viscoplastic porous media. Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 79-90. doi : 10.1016/j.crme.2007.10.017. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.017/
[1] Continuum theory of ductile rupture by void nucleation and growth, J. Engrg. Mater. Technol., Volume 99 (1977), pp. 2-15
[2] The elastic moduli of heterogeneous materials, J. Appl. Mech. (1962), pp. 143-150
[3] Exact results and approximate models for porous viscoplastic solids, Int. J. Plasticity, Volume 10 (1994), pp. 213-235
[4] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[5] On methods for bounding the overall properties of nonlinear composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 73-86
[6] The constitutive law of nonlinear viscous and porous materials, J. Mech. Phys. Solids, Volume 40 (1991) no. 1992, pp. 783-812
[7] A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140
[8] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I. Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757
[9] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. II. Applications, J. Mech. Phys. Solids, Volume 50 (2002), pp. 759-782
[10] Yield criteria for porous media in plane strain: second-order estimates versus numerical results, C. R. Mecanique, Volume 330 (2002), pp. 741-747
[11] Uniaxial deformation of microcellular metals, Acta Mater., Volume 54 (2006), pp. 4129-4142
[12] On the ductility of laminated materials, Int. J. Solids Struct., Volume 29 (1992), pp. 2329-2353
[13] High-rank nonlinear sequentially laminated composites and their possible tendency towards isotropic behavior, J. Mech. Phys. Solids, Volume 50 (2002), pp. 2577-2595
[14] M.I. Idiart, Macroscopic behavior and field statistics in viscoplastic composites, Ph.D. thesis, University of Pennsylvania, 2006
[15] Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech. Anal., Volume 94 (1986), pp. 307-334
[16] The Theory of Composites, Cambridge University Press, 2002
[17] Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids A, Volume 11 (1963), pp. 127-140
[18] Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862
[19] Thermal expansion coefficients of heterogeneous materials, Mekh. Tverd. Tela, Volume 2 (1967), pp. 83-94
[20] Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202
[21] The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396
[22] Second-order estimates for nonlinear composites and application to isotropic constituents, C. R. Mecanique, Volume 334 (2006), pp. 575-581
[23] Field statistics in nonlinear composites. I: Theory, Proc. R. Soc. A, Volume 463 (2007), pp. 183-202
[24] Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles, C. R. Mecanique, Volume 333 (2005), pp. 147-154
[25] Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, Int. J. Solids Struct., Volume 29 (2005), pp. 517-538
[26] Bounds and estimates for the properties of nonlinear heterogeneous systems, Philos. Trans. Roy. Soc. London A, Volume 340 (1992), pp. 531-567
[27] Nonlinear sequential laminates reproducing hollow sphere assemblages, C. R. Mecanique, Volume 335 (2007) no. 7, pp. 363-368
Cité par Sources :
Commentaires - Politique