Comptes Rendus
Note
Fractional stress-dilatancy equation based on critical state lines with arbitrary form
Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 167-178.

The original state-dependent fractional stress-dilatancy (FSD) equation for soils is developed based on the critical state lines (CSLs) with linear form. However, experimental evidences showed that the CSLs of soil in the pq and ep planes could be both nonlinear as well due to significant material degradation. This note aims to propose a unified FSD equation for soils with arbitrary types of CSLs. Detailed derivations are provided. To validate the proposed FSD equation, a series of triaxial test results of ballast and rockfill are simulated.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.78
Keywords: Fractional derivative, Fractional plasticity, Stress-dilatancy, Sand, Rockfill, State dependence

Yifei Sun 1, 2 ; Jiancheng Zhang 3

1 Faculty of Civil and Environmental Engineering, Ruhr Universität Bochum, 44780 Bochum, Germany
2 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, China
3 School of Naval Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, Jiangsu, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_1_167_0,
     author = {Yifei Sun and Jiancheng Zhang},
     title = {Fractional stress-dilatancy equation based on critical state lines with arbitrary form},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {167--178},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.78},
     language = {en},
}
TY  - JOUR
AU  - Yifei Sun
AU  - Jiancheng Zhang
TI  - Fractional stress-dilatancy equation based on critical state lines with arbitrary form
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 167
EP  - 178
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.78
LA  - en
ID  - CRMECA_2021__349_1_167_0
ER  - 
%0 Journal Article
%A Yifei Sun
%A Jiancheng Zhang
%T Fractional stress-dilatancy equation based on critical state lines with arbitrary form
%J Comptes Rendus. Mécanique
%D 2021
%P 167-178
%V 349
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmeca.78
%G en
%F CRMECA_2021__349_1_167_0
Yifei Sun; Jiancheng Zhang. Fractional stress-dilatancy equation based on critical state lines with arbitrary form. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 167-178. doi : 10.5802/crmeca.78. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.78/

[1] Y. P. Yao; D. A. Sun; T. Luo A critical state model for sands dependent on stress and density, Int. J. Numer. Anal. Methods Geomech., Volume 28 (2004), pp. 323-337 | DOI | Zbl

[2] X. S. Shi; J. Yin; J. Zhao Elastic visco-plastic model for binary sand-clay mixtures with applications to one-dimensional finite strain consolidation analysis, J. Eng. Mech., Volume 145 (2019), 04019059

[3] K. Been; M. G. Jefferies A state parameter for sands, Géotechnique, Volume 35 (1985), pp. 99-112 | DOI

[4] K. Been; M. Jefferies; J. Hachey The critical state of sands, Géotechnique, Volume 41 (1991), pp. 365-381 | DOI

[5] M. Tafili; T. Triantafyllidis State-dependent dilatancy of soils: experimental evidence and constitutive modeling, Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice (T. Triantafyllidis, ed.), Springer International Publishing, Cham, 2020, pp. 54-84 | DOI

[6] D. Yin; H. Wu; C. Cheng; Y. Chen Fractional order constitutive model of geomaterials under the condition of triaxial test, Int. J. Numer. Anal. Methods Geomech., Volume 37 (2013), pp. 961-972 | DOI

[7] Y. Xiao; Z. Sun; A. M. Stuedlein; C. Wang; Z. Wu; Z. Zhang Bounding surface plasticity model for stress–strain and grain-crushing behaviors of rockfill materials, Geosci. Front., Volume 11 (2020), pp. 495-510 | DOI

[8] S. Jocković; M. Vukićević Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule, Comput. Geotech., Volume 83 (2017), pp. 16-29 | DOI

[9] Y. Sun; Y. Gao; Y. Shen Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading, Géotechnique, Volume 69 (2019), pp. 158-165 | DOI

[10] Y. Sun; W. Sumelka State-dependent fractional plasticity model for the true triaxial behaviour of granular soil, Arch. Mech., Volume 71 (2019), pp. 23-47 | MR | Zbl

[11] F. Yu Influence of particle breakage on behavior of coral sands in triaxial tests, Int. J. Geomech., Volume 19 (2019), 04019131

[12] M. Liu; Y. Zhang; H. Zhu 3D elastoplastic model for crushable soils with explicit formulation of particle crushing, J. Eng. Mech., Volume 143 (2017), 04017140

[13] B. Indraratna; Q. Sun; S. Nimbalkar Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage, Can. Geotech. J., Volume 52 (2014), pp. 73-86 | DOI

[14] Y. Lai; M. Liao; K. Hu A constitutive model of frozen saline sandy soil based on energy dissipation theory, Int. J. Plast., Volume 78 (2016), pp. 84-113 | DOI

[15] A. Schofield; P. Wroth Critical State Soil Mechanics, McGraw-Hill London, New York, USA, 1968

[16] D. Lu; J. Liang; X. Du; C. Ma; Z. Gao Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule, Comput. Geotech., Volume 105 (2019), pp. 277-290 | DOI

[17] V. Bandini; M. R. Coop The influence of particle breakage on the location of the critical state line of sands, Soils Found., Volume 51 (2011), pp. 591-600 | DOI

[18] Y. Xiao; H. Liu; Y. Chen; J. Jiang; W. Zhang State-dependent constitutive model for rockfill materials, Int. J. Geomech., Volume 15 (2014), 04014075

[19] D. Sarkar; M. Goudarzy; D. König An interpretation of the influence of particle shape on the mechanical behavior of granular material, Granul. Matter, Volume 21 (2019), p. 53 | DOI

[20] Y. Sun; B. Indraratna; S. Nimbalkar Three-dimensional characterisation of particle size and shape for ballast, Geotech. Lett., Volume 4 (2014), pp. 197-202 | DOI

[21] Y. Sun; C. Zheng Breakage and shape analysis of ballast aggregates with different size distributions, Particuology, Volume 35 (2017), pp. 84-92 | DOI

[22] M. Caputo Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., Volume 13 (1967), pp. 529-539 | DOI

[23] H. Sun; Y. Zhang; D. Baleanu; W. Chen; Y. Chen A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., Volume 64 (2018), pp. 213-231 | DOI | Zbl

Cité par Sources :

Commentaires - Politique