[Les cristaux photoniques métalliques]
Les cristaux photoniques métalliques, aussi appelés diélectriques artificiels à leur origine, ont des propriétés différentes de celles de leurs homologues diélectriques. Ils sont d'intérêt stratégique pour le domaine des micro-ondes où ils présentent des pertes suffisamment faibles, associées à leur robustesse, leur conformité et leur faible coût. Dans cet article, nous faisons une revue de résultats récents sur les cristaux photoniques métalliques et leurs applications potentielles aux circuits et antennes micro-ondes. Après avoir rappelé les propriétés spectrales des cristaux photoniques métalliques, nous discutons successivement des structures ultra-compactes comme les surfaces à haute impédance, des bandes interdites photoniques contrôlables électriquement et des matériaux à indice de réfraction négatif. Enfin, nous discutons d'opportunités nouvelles offertes par les cristaux photoniques métalliques dans le domaine optique.
Metallic photonic crystals (PC), also originally called artificial dielectrics, have properties different from those of their dielectric homologues. They are of strategic interest for the microwave domain where they exhibit sufficiently weak loss in addition to their robustness, conformability and low-cost fabrication. In this paper, we review some recent results on metallic photonic crystals and their potential applications to microwave circuits and antennas. After recalling spectral properties of metallic PC, we successively address ultra-compact structures such as high-impedance surfaces, electrically controllable photonic band gaps and left-handed materials. Finally, we discuss new opportunities offered by metallic PCs in the optical domain.
Publié le :
Mots-clés : matériaux à bandes interdites photonique, microstructures, micro-ondes, optique
Jean-Michel Lourtioz 1 ; André de Lustrac 1
@article{CRPHYS_2002__3_1_79_0, author = {Jean-Michel Lourtioz and Andr\'e de Lustrac}, title = {Metallic photonic crystals}, journal = {Comptes Rendus. Physique}, pages = {79--88}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01293-8}, language = {en}, }
Jean-Michel Lourtioz; André de Lustrac. Metallic photonic crystals. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 79-88. doi : 10.1016/S1631-0705(02)01293-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01293-8/
[1] Microwave Engineering, Academic Press, London, 1963 (US patent deposited by G. Marconi and S. Franklin in 1919 pp. 592–605)
[2] Phys. Rev. Lett., 67 (1991), p. 2295
[3] , Phys. Rev. B (Photonic Crystals), Volume 10, Princeton University Press, Princeton, 1993, p. 11744
[4] Electron. Lett., 34 (1998), pp. 2041-2042
[5] IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2059-2074
[6] IEEE Microwave Guided Wave Lett., 8 (1998), pp. 372-374
[7] IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 1509-1514
[8] IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2092-2098
[9] Appl. Phys. Lett., 75 (1999), pp. 1625-1627
[10] IEEE J. Lightwave Technol., 17 (1999), pp. 2025-2031
[11] IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2075-2084
[12] Phys. Rev. Lett., 84 (2000), pp. 4184-4187
[13] Phys. Rev. Lett., 85 (1999), pp. 3966-3969
[14] Adv. Mater., 12 (2000), p. 833
[15] J. Vac. Sci. Technol. B, 18 (2000), pp. 3505-3509
[16] Phys. Rev. Lett., 77 (1996), pp. 2670-2673
[17] IEEE J. Lightwave Technol., 17 (1999), pp. 2170-2182
[18] IEEE J. Lightwave Technol., 17 (1999), pp. 2183-2190
[19] Phys. Rev. Lett., 76 (1996), p. 4773
[20] Phys. Rev. Lett., 76 (1996), p. 2480
[21] IEEE Trans. Microwave Theory Tech., 11 (1963), pp. 363-371
[22] B. Lenoir, Thèse de doctorat de l'université de Limoges, Limoges, mars 2001
[23] D.F. Sievenpiper, PhD thesis, University of California, 1999
[24] Microwave J., 1 (1999), pp. 67-76
[25] Phys. Rev. B, 48 (1993), pp. 13434-13438
[26] Proc. PECS II Int. Workshop, Sendai, Japan, March 8–10, 2000, pp. T2-3
[27] T. Brillat, Thèse de doctorat de l'université de Nanterre, Ville d'Avray, décembre 2000
[28] Microwave Opt. Tech. Lett., 25 (2000), p. 36
[29] Sov. Phys. – Usp., 92 (1964), p. 517
[30] Proc. PECS III, St. Andrews, June, 2001
[31] Phys. Rev. Lett., 84 (2000), pp. 2853-2856
- Dodecanacci superconductor-metamaterial photonic quasicrystal, Optik, Volume 222 (2020), p. 165290 | DOI:10.1016/j.ijleo.2020.165290
- Fabrication of Functional Nanophotonic Devices via Multiphoton Polymerization, Polymer-Based Additive Manufacturing: Recent Developments, Volume 1315 (2019), p. 151 | DOI:10.1021/bk-2019-1315.ch009
- Geometrical Dependence on the Onset of Surface Plasmon Polaritons in THz Grid Metasurfaces, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-018-36648-x
- , 2017 IEEE Asia Pacific Microwave Conference (APMC) (2017), p. 873 | DOI:10.1109/apmc.2017.8251588
- Dielectric Photonic Crystals, Photonics (2015), p. 133 | DOI:10.1002/9781119011750.ch5
- Metallic graded photonic crystals for graded index lens, Applied Physics A, Volume 109 (2012) no. 4, p. 1071 | DOI:10.1007/s00339-012-7386-4
- Experimental verification of a tunable left-handed material by bias magnetic fields, Applied Physics Letters, Volume 96 (2010) no. 16 | DOI:10.1063/1.3409120
- Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals, Journal of Materials Chemistry, Volume 20 (2010) no. 36, p. 7870 | DOI:10.1039/c0jm01554g
- Three-dimensional hybrid photonic crystals merged with localized plasmon resonances, Optics Express, Volume 18 (2010) no. 5, p. 4491 | DOI:10.1364/oe.18.004491
- Fabrication of Metal Photonic Crystals with Graded Lattice Spacing by Using Micro-Stereolithography, Materials Science Forum, Volume 631-632 (2009), p. 287 | DOI:10.4028/www.scientific.net/msf.631-632.287
- Fabrication of Metallodielectric Photonic Crystals with a Diamond Structure and their Microwave Properties, Journal of the American Ceramic Society, Volume 91 (2008) no. 4, p. 1194 | DOI:10.1111/j.1551-2916.2008.02305.x
- Transmission characteristics of two-dimensional magnetized magnetic photonic crystals, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 4, p. 960 | DOI:10.1088/0022-3727/40/4/006
- Fabrication and Characterization of Three-Dimensional Silver-Coated Polymeric Microstructures, Advanced Functional Materials, Volume 16 (2006) no. 13, p. 1739 | DOI:10.1002/adfm.200600394
- Effect of the dielectric background on dispersion characteristics of metallo-dielectric photonic crystals, Optics Communications, Volume 260 (2006) no. 2, p. 583 | DOI:10.1016/j.optcom.2005.10.076
- Similarity of dielectric resonance, local field distribution, and optical response in fractal composites, Physical Review B, Volume 72 (2005) no. 6 | DOI:10.1103/physrevb.72.064112
- Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring, Journal of Applied Physics, Volume 95 (2004) no. 7, p. 3778 | DOI:10.1063/1.1652251
- Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite, Physical Review B, Volume 70 (2004) no. 9 | DOI:10.1103/physrevb.70.092101
- Magnetic photonic crystals, Journal of Physics D: Applied Physics, Volume 36 (2003) no. 18, p. R277 | DOI:10.1088/0022-3727/36/18/r01
- Photonic Structures as Interference Devices, Optical Interference Coatings, Volume 88 (2003), p. 35 | DOI:10.1007/978-3-540-36386-6_2
- Magnonic Crystals — the Magnetic Counterpart of Photonic Crystals, Solid State Phenomena, Volume 94 (2003), p. 125 | DOI:10.4028/www.scientific.net/ssp.94.125
Cité par 20 documents. Sources : Crossref
Commentaires - Politique