Comptes Rendus
Microcavités et cristaux photoniques/Microcavities and photonic crystals
Metallic photonic crystals
[Les cristaux photoniques métalliques]
Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 79-88.

Les cristaux photoniques métalliques, aussi appelés diélectriques artificiels à leur origine, ont des propriétés différentes de celles de leurs homologues diélectriques. Ils sont d'intérêt stratégique pour le domaine des micro-ondes où ils présentent des pertes suffisamment faibles, associées à leur robustesse, leur conformité et leur faible coût. Dans cet article, nous faisons une revue de résultats récents sur les cristaux photoniques métalliques et leurs applications potentielles aux circuits et antennes micro-ondes. Après avoir rappelé les propriétés spectrales des cristaux photoniques métalliques, nous discutons successivement des structures ultra-compactes comme les surfaces à haute impédance, des bandes interdites photoniques contrôlables électriquement et des matériaux à indice de réfraction négatif. Enfin, nous discutons d'opportunités nouvelles offertes par les cristaux photoniques métalliques dans le domaine optique.

Metallic photonic crystals (PC), also originally called artificial dielectrics, have properties different from those of their dielectric homologues. They are of strategic interest for the microwave domain where they exhibit sufficiently weak loss in addition to their robustness, conformability and low-cost fabrication. In this paper, we review some recent results on metallic photonic crystals and their potential applications to microwave circuits and antennas. After recalling spectral properties of metallic PC, we successively address ultra-compact structures such as high-impedance surfaces, electrically controllable photonic band gaps and left-handed materials. Finally, we discuss new opportunities offered by metallic PCs in the optical domain.

Révisé le :
Publié le :
DOI : 10.1016/S1631-0705(02)01293-8
Keywords: photonic bandgap materials, microstructures, microwaves, optics
Mots-clés : matériaux à bandes interdites photonique, microstructures, micro-ondes, optique

Jean-Michel Lourtioz 1 ; André de Lustrac 1

1 Institut d'électronique fondamentale, université Paris XI, URA 22 du CNRS, bât 220, 91405 Orsay, France
@article{CRPHYS_2002__3_1_79_0,
     author = {Jean-Michel Lourtioz and Andr\'e de Lustrac},
     title = {Metallic photonic crystals},
     journal = {Comptes Rendus. Physique},
     pages = {79--88},
     publisher = {Elsevier},
     volume = {3},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01293-8},
     language = {en},
}
TY  - JOUR
AU  - Jean-Michel Lourtioz
AU  - André de Lustrac
TI  - Metallic photonic crystals
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 79
EP  - 88
VL  - 3
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01293-8
LA  - en
ID  - CRPHYS_2002__3_1_79_0
ER  - 
%0 Journal Article
%A Jean-Michel Lourtioz
%A André de Lustrac
%T Metallic photonic crystals
%J Comptes Rendus. Physique
%D 2002
%P 79-88
%V 3
%N 1
%I Elsevier
%R 10.1016/S1631-0705(02)01293-8
%G en
%F CRPHYS_2002__3_1_79_0
Jean-Michel Lourtioz; André de Lustrac. Metallic photonic crystals. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 79-88. doi : 10.1016/S1631-0705(02)01293-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01293-8/

[1] A.F. Harvey Microwave Engineering, Academic Press, London, 1963 (US patent deposited by G. Marconi and S. Franklin in 1919 pp. 592–605)

[2] E. Yablonovitch; T.J. Gmitter; K.M. Leung Phys. Rev. Lett., 67 (1991), p. 2295

[3] M.M. Sigalas; C.T. Chan; K.M. Ho; C.M. Soukoulis; J.D. Joannopoulos; R.D. Meade; J.N. Winn, Phys. Rev. B (Photonic Crystals), Volume 10, Princeton University Press, Princeton, 1993, p. 11744

[4] K.P. Ma; K. Hirose; F.R. Yang; Y. Qian; T. Itoh Electron. Lett., 34 (1998), pp. 2041-2042

[5] D. Sievenpiper; L. Zhang; R. Broas; N. Alexopolous; E. Yablonovitch IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2059-2074

[6] F.R. Yang; Y. Qian; R. Coccioli; T. Itoh IEEE Microwave Guided Wave Lett., 8 (1998), pp. 372-374

[7] F.R. Yang; K.P. Ma; Y. Qian; T. Itoh IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 1509-1514

[8] F.R. Yang; K.P. Ma; Y. Qian; T. Itoh IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2092-2098

[9] A. de Lustrac; F. Gadot; S. Cabaret; J.M. Lourtioz; T. Brillat; A. Priou; E. Akmansoy Appl. Phys. Lett., 75 (1999), pp. 1625-1627

[10] J.-M. Lourtioz; A. de Lustrac; F. Gadot; S. Rowson; A. Chelnokov; T. Brillat; A. Ammouche; J. Danglot; O. Vanbésien; D. Lippens IEEE J. Lightwave Technol., 17 (1999), pp. 2025-2031

[11] J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 2075-2084

[12] D.R. Smith; W.J. Padilla; D.C. Vier; S.C. Nemat-Nasser; S. Schultz Phys. Rev. Lett., 84 (2000), pp. 4184-4187

[13] J.B. Pendry Phys. Rev. Lett., 85 (1999), pp. 3966-3969

[14] K.M. Kulinowski; P. Jiang; H. Vaswani; V.L. Colvin Adv. Mater., 12 (2000), p. 833

[15] C. Cuisin; A. Chelnokov; J.-M. Lourtioz; D. Decanini; Y. Chen J. Vac. Sci. Technol. B, 18 (2000), pp. 3505-3509

[16] S.C. Kitson; W.L. Barnes; J.R. Sambles Phys. Rev. Lett., 77 (1996), pp. 2670-2673

[17] W.L. Barnes IEEE J. Lightwave Technol., 17 (1999), pp. 2170-2182

[18] V.A. Shubin; W. Kim; V.P. Safonov; A.K. Sarychev; R.L. Amstrong; V.M. Shalaev; F.J. Garcia-Vidal; J. Sanchez-Dehesa; A. Dechelette; E. Bustarret; T. Lopez-Rios; T. Fournier; B. Pannetier IEEE J. Lightwave Technol., 17 (1999), pp. 2183-2190

[19] J.B. Pendry; A.J. Holden; W.J. Stewart; I. Youngs Phys. Rev. Lett., 76 (1996), p. 4773

[20] D.F. Sievenpiper; M.E. Sickmiller; E. Yablonovitch Phys. Rev. Lett., 76 (1996), p. 2480

[21] R. Ulrich; K.F. Renk; L. Genzel IEEE Trans. Microwave Theory Tech., 11 (1963), pp. 363-371

[22] B. Lenoir, Thèse de doctorat de l'université de Limoges, Limoges, mars 2001

[23] D.F. Sievenpiper, PhD thesis, University of California, 1999

[24] Y. Qian; R. Coccioli; D.F. Sievenpiper; V. Radisic; E. Yablonovitch; T. Itoh Microwave J., 1 (1999), pp. 67-76

[25] E.N. Economou; M.M. Sigalas Phys. Rev. B, 48 (1993), pp. 13434-13438

[26] T. Brillat; A. de Lustrac; F. Gadot; E. Akmansoy; J.-M. Lourtioz Proc. PECS II Int. Workshop, Sendai, Japan, March 8–10, 2000, pp. T2-3

[27] T. Brillat, Thèse de doctorat de l'université de Nanterre, Ville d'Avray, décembre 2000

[28] G. Poilasne; P. Pouliguen; K. Mahdjoubi Microwave Opt. Tech. Lett., 25 (2000), p. 36

[29] V.G. Veselago; V.G. Veselago Sov. Phys. – Usp., 92 (1964), p. 517

[30] A. Scherer; J. Vuckovic; M. Loncar; T. Yoshie; O. Painter; D. Deppe; D. Dapkus Proc. PECS III, St. Andrews, June, 2001

[31] W.Y. Zhang; X.Y. Lei; Z.I. Wang; D.G. Zheng; W.Y. Tam; C.T. Chan; Ping Sheng Phys. Rev. Lett., 84 (2000), pp. 2853-2856

  • Chittaranjan Nayak; Alireza Aghajamali; Mehdi Solaimani; Jayanta K. Rakshit; Damodar Panigrahy; Kanaparthi V.P. Kumar; Bandaru Ramakrishna Dodecanacci superconductor-metamaterial photonic quasicrystal, Optik, Volume 222 (2020), p. 165290 | DOI:10.1016/j.ijleo.2020.165290
  • Rashi Sharma; Stephen M. Kuebler; Christopher N. Grabill; Jennefir L. Digaum; Nicholas R. Kosan; Alexander R. Cockerham; Noel Martinez; Raymond C. Rumpf Fabrication of Functional Nanophotonic Devices via Multiphoton Polymerization, Polymer-Based Additive Manufacturing: Recent Developments, Volume 1315 (2019), p. 151 | DOI:10.1021/bk-2019-1315.ch009
  • Gian Paolo Papari; Can Koral; Antonello Andreone Geometrical Dependence on the Onset of Surface Plasmon Polaritons in THz Grid Metasurfaces, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-018-36648-x
  • Rahul Yadav; Piyush N. Patel, 2017 IEEE Asia Pacific Microwave Conference (APMC) (2017), p. 873 | DOI:10.1109/apmc.2017.8251588
  • Robert H. Lipson Dielectric Photonic Crystals, Photonics (2015), p. 133 | DOI:10.1002/9781119011750.ch5
  • Fabian Gaufillet; Éric Akmansoy Metallic graded photonic crystals for graded index lens, Applied Physics A, Volume 109 (2012) no. 4, p. 1071 | DOI:10.1007/s00339-012-7386-4
  • Yin Poo; Rui-xin Wu; Guang-hua He; Ping Chen; Jie Xu; Ri-feng Chen Experimental verification of a tunable left-handed material by bias magnetic fields, Applied Physics Letters, Volume 96 (2010) no. 16 | DOI:10.1063/1.3409120
  • Mathieu Salaün; Brian Corbett; Simon B. Newcomb; Martyn E. Pemble Fabrication and characterization of three-dimensional silver/air inverted opal photonic crystals, Journal of Materials Chemistry, Volume 20 (2010) no. 36, p. 7870 | DOI:10.1039/c0jm01554g
  • Jiafang Li; MD Muntasir Hossain; Baohua Jia; Dario Buso; Min Gu Three-dimensional hybrid photonic crystals merged with localized plasmon resonances, Optics Express, Volume 18 (2010) no. 5, p. 4491 | DOI:10.1364/oe.18.004491
  • Daisuke Sano; Soshu Kirihara Fabrication of Metal Photonic Crystals with Graded Lattice Spacing by Using Micro-Stereolithography, Materials Science Forum, Volume 631-632 (2009), p. 287 | DOI:10.4028/www.scientific.net/msf.631-632.287
  • Wen Wang; Soshu Kirihara; Yoshinari Miyamoto; Zhihao Jin Fabrication of Metallodielectric Photonic Crystals with a Diamond Structure and their Microwave Properties, Journal of the American Ceramic Society, Volume 91 (2008) no. 4, p. 1194 | DOI:10.1111/j.1551-2916.2008.02305.x
  • Jie Xu; Rui-xin Wu; Ping Chen; Yue Shi Transmission characteristics of two-dimensional magnetized magnetic photonic crystals, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 4, p. 960 | DOI:10.1088/0022-3727/40/4/006
  • Y.-S. Chen; A. Tal; D. B. Torrance; S. M. Kuebler Fabrication and Characterization of Three-Dimensional Silver-Coated Polymeric Microstructures, Advanced Functional Materials, Volume 16 (2006) no. 13, p. 1739 | DOI:10.1002/adfm.200600394
  • M.A. Ustyantsev; L.F. Marsal; J. Ferré-Borrull; J. Pallarès Effect of the dielectric background on dispersion characteristics of metallo-dielectric photonic crystals, Optics Communications, Volume 260 (2006) no. 2, p. 583 | DOI:10.1016/j.optcom.2005.10.076
  • Bing Dai; Ying Gu; Chen Li; Qihuang Gong Similarity of dielectric resonance, local field distribution, and optical response in fractal composites, Physical Review B, Volume 72 (2005) no. 6 | DOI:10.1103/physrevb.72.064112
  • M. Shamonin; E. Shamonina; V. Kalinin; L. Solymar Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring, Journal of Applied Physics, Volume 95 (2004) no. 7, p. 3778 | DOI:10.1063/1.1652251
  • Ying Gu; Qihuang Gong Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite, Physical Review B, Volume 70 (2004) no. 9 | DOI:10.1103/physrevb.70.092101
  • I L Lyubchanskii; N N Dadoenkova; M I Lyubchanskii; E A Shapovalov; Th Rasing Magnetic photonic crystals, Journal of Physics D: Applied Physics, Volume 36 (2003) no. 18, p. R277 | DOI:10.1088/0022-3727/36/18/r01
  • Carl G. Ribbing Photonic Structures as Interference Devices, Optical Interference Coatings, Volume 88 (2003), p. 35 | DOI:10.1007/978-3-540-36386-6_2
  • H. Puszkarski; M. Krawczyk Magnonic Crystals — the Magnetic Counterpart of Photonic Crystals, Solid State Phenomena, Volume 94 (2003), p. 125 | DOI:10.4028/www.scientific.net/ssp.94.125

Cité par 20 documents. Sources : Crossref

Commentaires - Politique