Comptes Rendus
Photonic crystals and metamaterials
[Cristaux photoniques et métamatériaux]
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 4-15.

Les résultats récents obtenus sur les composants semiconducteurs à cristal photonique sont très prometteurs pour les futurs développements des cristaux photoniques et de leurs applications aux circuits photoniques intégrés. Les performances des composants reposent surtout sur le fort confinement de la lumière dû aux effets de bande interdite photonique, mais les cristaux photoniques présentent aussi des propriétés remarquables de dispersion dans leurs bandes de transmission, ouvrant ainsi la perspective de nouvelles fonctions optiques. Les effets de lumière lente, de supercollimation, de superprisme et de réfraction négative sont parmi les phénomènes fascinants qui motivent aujourd'hui la communauté. Les études dans ces directions sont parallèles à celles sur les métamatériaux dont on attend un contrôle simultané de la permittivité diélectrique et de la perméabilité magnétique. Dans cet article, nous faisons une brève revue de quelques avancées importantes sur les cristaux photoniques et les métamatériaux, ces deux sujets ayant reçu une attention particulière à l'atelier « Nanosciences et Radioélectricité » organisé par le CNFRS à Paris les 20 et 21 Mars 2007.

Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to ‘all-photonic’ integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the “Nanosciences et Radioélectricité” workshop organized by CNFRS in Paris on the 20th and 21st of March 2007.

Publié le :
DOI : 10.1016/j.crhy.2007.10.006
Keywords: Photonic crystals, Integrated optics, Negative refraction, Metamaterials, Plasmonics
Mot clés : Cristaux photoniques, Optique intégrée, Réfraction négative, Métamatériaux, Plasmonique
Jean-Michel Lourtioz 1

1 Institut d'électronique fondamentale (IEF), UMR 8622 du CNRS, université Paris Sud XI, bâtiment 220, 91405 Orsay cedex, France
@article{CRPHYS_2008__9_1_4_0,
     author = {Jean-Michel Lourtioz},
     title = {Photonic crystals and metamaterials},
     journal = {Comptes Rendus. Physique},
     pages = {4--15},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.006},
     language = {en},
}
TY  - JOUR
AU  - Jean-Michel Lourtioz
TI  - Photonic crystals and metamaterials
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 4
EP  - 15
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.006
LA  - en
ID  - CRPHYS_2008__9_1_4_0
ER  - 
%0 Journal Article
%A Jean-Michel Lourtioz
%T Photonic crystals and metamaterials
%J Comptes Rendus. Physique
%D 2008
%P 4-15
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.10.006
%G en
%F CRPHYS_2008__9_1_4_0
Jean-Michel Lourtioz. Photonic crystals and metamaterials. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 4-15. doi : 10.1016/j.crhy.2007.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.006/

[1] E. Yablonovitch; T.J. Gmitter; K.M. Leung Phys. Rev. Lett., 67 (1991), p. 2295

[2] J.-M. Lourtioz; H. Benisty; V. Berger; J.-M. Gérard; D. Maystre; A. Tchelnokov Photonic Crystals: Towards Nanoscale Photonic Devices, Springer-Verlag, Berlin/Heidelberg/New York, 2005

[3] T. Asano; B.S. Song; S. Noda Opt. Express, 14 (2006), p. 1996

[4] E. Dulkeith; S.J. McNab; Y.A. Vlasov Phys. Rev. B, 72 (2005), p. 115102

[5] S. Assefa; S.J. McNab; Y.A. Vlasov Opt. Lett., 31 (2006), p. 745

[6] H.-G. Park; S.H. Kim; S.H. Kwon; Y.G. Ju; J.K. Yang; J.H. Baek; S.B. Kim; Y.H. Lee Science, 305 (2004), p. 1444

[7] K. Asakawa; M. Sugimoto; K. Watanabe; N. Ozaki; A. Mizutani; Y. Takata; Y. Kitagawa; H. Ishikawa; N. Ikeda; K. Awazu; A. Watanabe; S. Nakamura; S. Ohkouchi; K. Inoue; M. Kristensen; O. Sigmund; P.I. Borel; R. Baets New J. Phys., 8 (2006), p. 208

[8] M. Notomi; K. Yamada; A. Shinya; J. Takahashi; C. Takahashi; I. Yokohama Phys. Rev. Lett., 87 (2001), p. 253902

[9] H. Kosaka; T. Kawashima; A. Tomita; M. Notomi; T. Tamamura; T. Sato; S. Kawakami Appl. Phys. Lett., 74 (1999), p. 1212

[10] H. Kosaka; T. Kawashima; A. Tomita; M. Notomi; T. Tamamura; T. Sato; S. Kawakami Phys. Rev. B, 58 (1998), p. R10096

[11] M. Notomi Phys. Rev. B, 62 (2000), p. 10696

[12] C. Luo; S.G. Johnson; J.D. Jouannopoulos; J.B. Pendry Phys. Rev. B, 65 (2002), p. R201104

[13] P.V. Parimi; W.T. Lu; P. Vodo; J. Sokoloff; J.S. Derov; S. Sridhar Phys. Rev. Lett., 92 (2004), p. 127401

[14] V.G. Veselago Soviet Phys. Uspekhi, 10 (1968), p. 509

[15] J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart IEEE Trans. Microw. Theory Tech., 47 (1999), p. 2075

[16] J.B. Pendry Phys. Rev. Lett., 85 (2000), p. 3966

[17] D.R. Smith; W.J. Padilla; D.C. Vier; S. Nemat-Nasser; S. Schultz Phys. Rev. Lett., 84 (2000), p. 4184

[18] D.R. Smith; J.B. Pendry; M.C.K. Wiltshire Science, 305 (2004), p. 788

[19] T.W. Ebbesen; H.J. Lezec; H.F. Ghaemi; T. Thio; P.A. Wolff Nature, 391 (1998), p. 667

[20] F. Pommereau; L. Legouézigou; S. Hubert; S. Sainson; J.P. Chandouineau; S. Fabre; G.H. Duan; B. Lombardet; R. Ferrini; R. Houdré J. Appl. Phys., 95 (2004), p. 2242

[21] Y. Tanaka; T. Asano; R. Hatsuta; S. Noda Appl. Phys. Lett., 88 (2006), p. 011112

[22] C. Monat; C. Seassal; X. Letartre; P. Regreny; P. Rojo-Romeo; P. Viktorovitch; M. Le Vassor d'Yerville; D. Cassagne; J.P. Albert; E. Jalaquier; S. Pocas; B. Aspar Appl. Phys. Lett., 81 (2002), p. 5102

[23] B. Ben Bakir; C. Seassal; X. Letartre; P. Regreny; M. Gendry; P. Viktorovitch; M. Zussy; L. Di Cioccio; J.-M. Fideli Opt. Express, 14 (2006), p. 9269

[24] A.W. Fang; H. Park; J.E. Bowers; R. Jones; O. Cohen; M.J. Paniccia Opt. Express, 14 (2006), p. 9203

[25] K. Vahala Optical microcavities, Nature, Volume 424 (2005), p. 839

[26] Y. Akahane; T. Asano; B.S. Song; S. Noda Nature, 425 (2003), p. 944

[27] E. Weidner; S. Combrié; A. de Rossi; N.V.Q. Tran; S. Cassette Appl. Phys. Lett., 90 (2007), p. 101118

[28] E.M. Purcell Phys. Rev., 69 (1946), p. 681

[29] S. Laurent; S. Varoutsis; L. Le Gratiet; A. Lemaître; I. Sagnes; F. Raineri; A. Levenson; I. Robert-Philip; I. Abram Appl. Phys. Lett., 87 (2005), p. 163107

[30] S. Strauf; K. Hennessy; M.T. Rahker; Y.S. Choi; A. Badolato; L.C. Andreani; E.L. Hu; P.M. Petroff; D. Bouwmeester Phys. Rev. Lett., 96 (2006), p. 127404

[31] L.M. Duan; H.J. Kimble Phys. Rev. Lett., 92 (2004), p. 127902

[32] K.M. Birnbaum; A. Boca; R. Miller; A.D. Boozer; T.E. Northrup; H.J. Kimble Nature, 436 (2005), p. 87

[33] S. McNab; N. Moll; Y. Vlassov Opt. Express, 11 (2003), p. 2927

[34] Y.A. Vlassov; S.J. McNab Opt. Express, 12 (2004), p. 1622

[35] X. Checoury, Thèse de l'Université Paris-XI, 2005

[36] J. Mouette; C. Seassal; X. Letartre; P. Rojo-Romeo; J.L. Leclercq; P. Regreny; P. Viktorovitch; E. Jalaguier; P. Perreau; H. Moriceau Electron. Lett., 39 (2003), p. 526

[37] K.H. Lee; J.H. Baek; I.K. Hwang; Y.L. Lee; G.H. Lee; J.S. Ser; H.D. Kim; H.E. Shin Opt. Express, 12 (2004), p. 4136

[38] K. Sakoda Opt. Express, 4 (1999), p. 167

[39] X. Checoury; P. Boucaud; J.-M. Lourtioz; F. Pommereau; C. Cuisin; E. Derouin; O. Drisse; L. Legouezigou; F. Lelarge; F. Poingt; G.H. Duan; D. Mulin; S. Bonnefont; O. Gauthier-Lafaye; J. Valentin; F. Lozes; A. Talneau Appl. Phys. Lett., 85 (2004), p. 5502

[40] X. Checoury; P. Boucaud; J.-M. Lourtioz; O. Gauthier-Lafaye; S. Bonnefont; D. Mulin; J. Valentin; F. Lozes-Dupuy; F. Pommereau; C. Cuisin; E. Derouin; O. Drisse; L. Legouezigou; F. Lelarge; F. Poingt; G.H. Duan; A. Talneau Appl. Phys. Lett., 86 (2005), p. 151111

[41] X. Checoury; P. Boucaud; X. Li; J.-M. Lourtioz; E. Derouin; O. Drisse; F. Poigt; L. Legouezigou; O. Legouezigou; P. Pommereau; G.H. Duan Appl. Phys. Lett., 89 (2006), p. 071108

[42] T.D. Happ; M. Kamp; A. Forchel; J.L. Gentner; L. Goldstein Appl. Phys. Lett., 82 (2003), p. 4

[43] T. Yang; A. Mock; J.D. O'Brien; S. Lipson; D.G. Deppe Opt. Lett., 32 (2007), p. 1153

[44] B. Analui; D. Guckenberger; D. Kucharski; A. Narasimha IEEE J. Sol. State Circuits, 41 (2006), p. 2945

[45] M. Notomi; K. Yamada; A. Shinya; J. Takahashi; C. Takahashi; I. Yokohama Phys. Rev. Lett., 87 (2001), p. 253902

[46] Y.A. Vlasov; M. O'Boyle; H.F. Hamann; S.J. McNab Nature, 438 (2005), p. 65

[47] M.D. Settle; R.J.P. Engelen; M. Salib; A. Michaeli; L. Kuipers; T.F. Krauss Opt. Express, 15 (2007), p. 219

[48] K. Sakoda; K. Ohtaka Phys. Rev. B, 54 (1996), p. 5742

[49] K. Sakoda Opt. Express, 4 (1999), p. 167

[50] H. Nakamura; Y. Sugimoto; K. Kanamoto; N. Ikeda; Y. Tanaka; Y. Nakamura; S. Ohkouchi; Y. Watanabe; K. Inoue; H. Ishikawa; K. Asakawa Opt. Express, 12 (2004), p. 6606

[51] L. Wu; M. Mazilu; T. Karle; T.F. Krauss IEEE J. Quantum Electron., 38 (2002), p. 915

[52] E. Cassan; A. Lupu; S. Laval; L. El Melhaoui; P. Lyan; J.M. Fideli Opt. Express, 12 (2004), p. 5690

[53] A. Lupu; A. De Lustrac; A. Ourir; J.-M. Lourtioz; X. Checoury; E. Centeno; D. Cassagne; J.-P. Albert; F. Pommereau; L. Legouezigou; O. Drisse; O. Legouezigou; E. Derouin; G.H. Duan Opt. Express, 14 (2006), p. 2003

[54] E. Viasnoff-Schwoob; C. Weisbuch; H. Benisty; C. Cuisin; E. Derouin; O. Drisse; G.-H. Duan; L. Legouézigou; O. Legouézigou; F. Pommereau; S. Golka; H. Heidrich; H.J. Hensel; K. Janiak Appl. Phys. Lett., 86 (2005), p. 101107

[55] D.W. Prather; S. Shi; J. Murakowski; G.J. Schneider; A. Sharkawy; C. Chen; B.L. Miao; R. Martin J. Phys. D: Appl. Phys., 40 (2007), p. 2635

[56] A. Berrier; M. Mulot; M. Swillo; M. Qiu; L. Thylen; S. Anand Phys. Rev. Lett., 93 (2004), p. 073902

[57] E. Centeno; D. Cassagne Opt. Lett., 30 (2005), p. 2278

[58] E. Centeno; D. Cassagne; J.-P. Albert Phys. Rev. B, 73 (2006), p. 235119

[59] E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, J.-M. Lourtioz, private communication

[60] D.R. Smith; N. Kroll Phys. Rev. Lett., 85 (2000), p. 2933

[61] J.B. Pendry; A.J. Holden; W.J. Stewart; I. Youngs Phys. Rev. Lett., 76 (1996), p. 4773

[62] R.A. Shelby; D.R. Smith; S. Schultz Science, 292 (2001), p. 77

[63] A. Djermoun, A. de Lustrac, J.-M. Lourtioz, Photonics and Nanostructures: Fundamental and Applications, vol. 5, 2007, p. 21

[64] L.D. Landau; E.M. Lifshitz Electrodynamics of Continuous Media, Oxford, Pergamon, 1960 (Section 60)

[65] C. Enkrich; M. Wegener; S. Linden; S. Burger; L. Zschiedrich; F. Schmidt; J.F. Zhou; Th. Koschny; C.M. Soukoulis Phys. Rev. Lett., 95 (2005), p. 203901

[66] F. Gadot; B. Belier; A. Aassime; A. De Lustrac; J.-M. Lourtioz J. Opt. Quant. Electron., 39 (2007), p. 273

[67] B. Kante; A. Ourir; S.N. Burokur; F. Gadot; A. de Lustrac C. R. Physique, 9 (2008) no. 1, pp. 31-40

[68] A.N. Grigorenko; K. Geim; H.F. Gleeson; Y. Zhang; A.A. Firsov; I.Y. Khrushchev; J. Petrovic Nature, 438 (2005), p. 335

[69] T. Decoopman; G. Tayeb; S. Enoch; D. Maystre; B. Gralak Phys. Rev. Lett., 97 (2006), p. 073905

[70] D. Maystre; S. Enoch J. Opt. Soc. Am. A, 21 (2004), p. 122

[71] N. Fang; H. Lee; C. Sun; X. Zhang Science, 308 (2005), p. 534

[72] D.O.S. Melville; R.J. Blaikie; C.R. Wolf Appl. Phys. Lett., 84 (2004), p. 4403

[73] A. Ourir; A. De Lustrac; J.M. Lourtioz Appl. Phys. Lett., 88 (2006), p. 084103

[74] J. Pendry; D. Schurig; D.R. Smith Science, 312 (2006), p. 1780

[75] D. Schurig; J.J. Mock; B.J. Justice; S.A. Cummer; J.B. Pendry; A.F. Starr; D.R. Smith Science, 314 (2006), p. 977

[76] W. Cai; U.K. Chettiar; A.V. Kildishev; V.M. Shalaev Nature Photonics, 1 (2007), p. 224

[77] C. Rockstuhl; F. Lederer; C. Etrich; T. Zentgraf; J. Kuhl; H. Giessen Opt. Express, 14 (2006), p. 8827

[78] S.A. Maier Plasmonics: Fundamentals and Applications, Springer-Verlag, 2007

[79] B. Cluzel; E. Picard; T. Charvolin; E. Hadji; D. Gérard; L. Lalouät; F. De Fornel; C. Sauvan; P. Lalanne Appl. Phys. Lett., 88 (2006), p. 051112

[80] L. Lalouat; B. Cluzel; P. Velha; E. Picard; D. Peyrade; J.P. Hugonin; P. Lalanne; E. Hadji; F. de Fornel Phys. Rev. B, 76 (2007), p. 041102

[81] B. Cluzel; L. Lalouat; P. Velha; E. Picard; D. Peyrade; J.-C. Rodier; T. Charvolin; P. Lalanne; E. Hadji; F. de Fornel C. R. Physique, 9 (2008) no. 1, pp. 24-30

[82] J.C. Knight Nature, 424 (2003), pp. 847-851

[83] B. Kuhlmey; R.C. McPhedran; C.M. de Stercke; P.A. Robinson; G. Renversez; D. Maystre Opt. Express, 10 (2002), pp. 1285-1290

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Photonic crystals: basic concepts and devices

Pierre Viktorovitch; Emmanuel Drouard; Michel Garrigues; ...

C. R. Phys (2007)


Metallic photonic crystals

Jean-Michel Lourtioz; André de Lustrac

C. R. Phys (2002)


Phase-shift, refraction and focusing based on the metamaterial technologies

Didier Lippens

C. R. Phys (2009)