Comptes Rendus
Agrégats comme précurseurs des nano-objets/Clusters as precursors of nano-objects
Structure of nano-objects through polarizability and dipole measurements
[Structure des nano-objets determinée par mesures de polarisabilité et de dipôle]
Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 301-317.

La polarisabilité statique et le dipôle électrique permanent sont des quantités importantes pour comprendre les propriétés électroniques et structurales d'un agrégat. Dans cet article nous présentons les différents montages expérimentaux utilisés pour ces mesures et les simulations nécessaires à l'interprétation des résultats. Les cas des agrégats polaires et non polaires sont distingués et l'influence de la rigidité de l'agrégat sur son mouvement dans un champ électrique est discutée. Ces deux premières parties sont suivies par une revue des mesures réalisées sur des agrégats atomiques et des agrégats mixtes. Pour les agrégats atomiques, la polarisabilité est reliée à la nature de la liaison. Dans les métaux simples comme les agrégats alcalins, les résultats sont bien expliqués par la délocalisation des électrons de valence, caractéristique de la liaison métallique. Pour les autres métaux, la polarisabilité reflète la difficulté à décrire simplement les propriétés électroniques de ces agrégats. Dans le cas de l'aluminium, les mesures de polarisabilité mettent en évidence une transition non-métal–métal avec l'augmentation de la taille de l'agrégat. Dans le cas du nickel, de fortes variations avec la taille sont observées, certainement dues à un fort couplage entre propriétés électroniques et structure atomique. L'évolution avec la taille pour les agrégats semi-conducteurs (silicium, germanium) et covalents (fullerènes) est différente de celle observée pour les agrégats métalliques. Les mesures réalisées sur les fullerènes illustrent l'influence prépondérante de la géométrie sur la valeur de la polarisabilité. Dans le cas des agrégats mixtes, le dipôle électrique est la mesure la plus simple de la densité de charge dans l'agrégat. Ce dipôle dépend des transferts de charge et de l'arrangement géométrique des atomes dans la particule. Les mesures de dipôle électrique permanent sont illustrées par les résultats obtenus récemment sur deux exemples très différents : les agrégats mixtes métal-fullerène où un fort transfert de charge se produit et les agrégats d'halogénure d'alcalin dominés par une structure ionique.

The electric polarizability and the electric permanent dipole are important quantities for understanding the electronic properties of a cluster. Experimental techniques, the simulations necessary to interpret the experimental results, and a review of measurements on atomic and mixed clusters are presented. For atomic clusters, the polarizability is related to the type of bonding. In simple metal clusters such as alkali clusters, the results are well interpreted by the electron delocalization characteristic of the metallic bonding. In other metal clusters, the polarizability reflects the difficulty of establishing a clear and regular picture of the size evolution of electronic properties. The size evolution observed for covalent and semiconductor clusters is different from the evolution for metal clusters, and the influence of the geometry is preponderant, as demonstrated in the case of fullerenes. For mixed clusters, the measurements of the electric dipole allows one to deduce the charge transfers and the geometric arrangement. This is illustrated in the case of the metal-fullerene system and alkali halide clusters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01318-X
Keywords: cluster, electric polarizability, electric permanent dipole, metal-fullerene system, alkali halide cluster
Mots-clés : agrégat, polarisabilité statique, dipôle électrique permanent, métal-fullerène, agrégats d'halogénure d'alcalin

Michel Broyer 1 ; Rodolphe Antoine 1 ; Emmanuel Benichou 1 ; Isabelle Compagnon 1 ; Philippe Dugourd 1 ; Driss Rayane 1

1 Laboratoire de spectrométrie ionique et moléculaire UMR n 5579, CNRS et université Claude Bernard, Lyon I, bâtiment Alfred Kastler, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
@article{CRPHYS_2002__3_3_301_0,
     author = {Michel Broyer and Rodolphe Antoine and Emmanuel Benichou and Isabelle Compagnon and Philippe Dugourd and Driss Rayane},
     title = {Structure of nano-objects through polarizability and dipole measurements},
     journal = {Comptes Rendus. Physique},
     pages = {301--317},
     publisher = {Elsevier},
     volume = {3},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01318-X},
     language = {en},
}
TY  - JOUR
AU  - Michel Broyer
AU  - Rodolphe Antoine
AU  - Emmanuel Benichou
AU  - Isabelle Compagnon
AU  - Philippe Dugourd
AU  - Driss Rayane
TI  - Structure of nano-objects through polarizability and dipole measurements
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 301
EP  - 317
VL  - 3
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01318-X
LA  - en
ID  - CRPHYS_2002__3_3_301_0
ER  - 
%0 Journal Article
%A Michel Broyer
%A Rodolphe Antoine
%A Emmanuel Benichou
%A Isabelle Compagnon
%A Philippe Dugourd
%A Driss Rayane
%T Structure of nano-objects through polarizability and dipole measurements
%J Comptes Rendus. Physique
%D 2002
%P 301-317
%V 3
%N 3
%I Elsevier
%R 10.1016/S1631-0705(02)01318-X
%G en
%F CRPHYS_2002__3_3_301_0
Michel Broyer; Rodolphe Antoine; Emmanuel Benichou; Isabelle Compagnon; Philippe Dugourd; Driss Rayane. Structure of nano-objects through polarizability and dipole measurements. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 301-317. doi : 10.1016/S1631-0705(02)01318-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01318-X/

[1] W.A. deHeer Rev. Mod. Phys., 65 (1993), p. 611

[2] J. Blanc; V. Bonacic-Koutecky; M. Broyer; J. Chevaleyre; P. Dugourd; J. Koutecky; C. Scheuch; J.P. Wolf; L. Wöste J. Chem. Phys., 96 (1992), p. 1793

[3] J. Ho; K.M. Ervin; W.C. Lineberger J. Chem. Phys., 93 (1990), p. 6987

[4] O. Cheshnovsky; K.J. Taylor; J. Conceicao; R.E. Smalley Phys. Rev. Lett., 64 (1990), p. 1785

[5] J.C. Pinare; B. Baguenard; C. Bordas Phys. Rev. Lett., 81 (1998), p. 2225

[6] C. Bréchignac; P. Cahuzac; F. Carlier; M.D. Frutos; J. Leygnier J. Chem. Phys., 93 (1990), p. 7449

[7] R. Antoine; P. Dugourd; D. Rayane; E. Benichou; M. Broyer J. Chem. Phys., 107 (1997), p. 2664

[8] M.F. Jarrold J. Phys. Chem., 99 (1995), p. 11

[9] T.M. Miller; B. Bederson Adv. At. Mol. Phys., 13 (1977), p. 1

[10] K.D. Bonin; V.V. Kresin Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters, World Scientific, Singapore, 1997

[11] W.D. Knight; K. Clememger; W.A. deHeer; W.A. Saunders Phys. Rev. B, 31 (1985), p. 2539

[12] R. Antoine; D. Rayane; A.R. Allouche; M. Aubert-Frécon; E. Benichou; F.W. Dalby; P. Dugourd; M. Broyer; C. Guet J. Chem. Phys., 110 (1999), p. 5568

[13] W.A. deHeer; P. Milani; A. Chatelain Phys. Rev. Lett., 63 (1989), p. 2834

[14] R. Schäfer; S. Schlecht; J. Woenckhaus; J.A. Becker Phys. Rev. Lett., 76 (1996), p. 471

[15] R. Antoine; P. Dugourd; D. Rayane; E. Benichou; M. Broyer; F. Chandezon; C. Guet J. Chem. Phys., 110 (1999), p. 9771

[16] I. Compagnon; R. Antoine; M. Broyer; P. Dugourd; J. Lermé; D. Rayane Phys. Rev. A, 64 (2001), p. 025201

[17] A. Ballard; K. Bonin; J. Louderback J. Chem. Phys., 113 (2000), p. 5732

[18] W.A. deHeer; P. Milani; A. Chatelain Phys. Rev. Lett., 65 (1990), p. 488

[19] J.P. Bucher; D.C. Douglass; L.A. Bloomfield Phys. Rev. Lett., 66 (1991), p. 3052

[20] D.C. Douglass; J.P. Bucher; L.A. Bloomfield Phys. Rev. Lett., 68 (1992), p. 1774

[21] I.M.L. Billas; J.A. Becker; A. Châtelain; W.A. deHeer Phys. Rev. Lett., 71 (1993), p. 4067

[22] D. Rayane; R. Antoine; P. Dugourd; E. Benichou; A.R. Allouche; M. Aubert-Frécon; M. Broyer Phys. Rev. Lett., 84 (2000), p. 1962

[23] P. Dugourd; R. Antoine; D. Rayane; E. Benichou; M. Broyer Phys. Rev. A, 62 (2000), p. 011201 (R)

[24] S. Kümmel; T. Berkus; P.G. Reinhard; M. Brack Eur. Phys. J. D, 11 (2000), p. 239

[25] S. Kümmel; J. Akola; M. Manninen Phys. Rev. Lett., 84 (2000), p. 3827

[26] L. Kronik; I. Vasiliev; J.R. Chelikowsky Phys. Rev. B, 62 (2000), p. 9992

[27] S.A. Blundell; C. Guet; R.R. Zope Phys. Rev. Lett., 84 (2000), p. 4826

[28] G. Tikhonov; V. Kasperovich; K. Wong; V.V. Kresin Phys. Rev. A, 64 (2001), p. 063202

[29] E. Benichou; R. Antoine; D. Rayane; B. Vezin; F.W. Dalby; P. Dugourd; M. Broyer; C. Ristori; F. Chandezon; B.A. Huber; J.C. Rocco; S.A. Blundell; C. Guet Phys. Rev. A, 59 (1999), p. R1

[30] M.B. Knickelbein J. Chem. Phys., 115 (2001), p. 5957

[31] U. Hohm Vacuum, 58 (2000), p. 117

[32] R.W. Molof; T.M. Miller; H.L. Schwartz; B. Bederson; J.T. Park J. Chem. Phys., 61 (1974), p. 1816

[33] E. Benichou; A.R. Allouche; R. Antoine; M. Aubert-Frécon; M. Bourgoin; M. Broyer; P. Dugourd; G. Hadinger; D. Rayane Eur. Phys. J. D, 10 (2000), p. 233

[34] C.H. Townes; A.L. Shawlow Microwave Spectroscopy, McGraw-Hill, New York, 1955

[35] H. Scheffers Phys. Z., 41 (1940), p. 89

[36] I. Compagnon; F.C. Hagemeister; R. Antoine; D. Rayane; M. Broyer; P. Dugourd; R.R. Hudgins; M.F. Jarrold J. Am. Chem. Soc., 123 (2001), p. 8440

[37] P. Dugourd; I. Compagnon; F. Lepine; R. Antoine; D. Rayane; M. Broyer Chem. Phys. Lett., 336 (2001), p. 511

[38] H. Goldstein Classical Mechanics, Addison-Wesley, Reading, MA, 1980

[39] L. Landau; E. Lifchitz Physique Théorique, Tome 1, Mécanique, Mir, Moscou, 1966

[40] D. Rayane; A.R. Allouche; E. Benichou; R. Antoine; M. Aubert-Frécon; P. Dugourd; M. Broyer; C. Ristori; F. Chandezon; B.A. Huber; C. Guet Eur. Phys. J. D, 9 (1999), p. 243

[41] I. Moullet; J. Luriaas; M.F. Reuse; J. Buttet Phys. Rev. Lett., 65 (1990), p. 476

[42] J.M. Pacheco; J.L. Martins J. Chem. Phys., 106 (1997), p. 6039

[43] L. Kronik; I. Vasiliev; M. Jain; J.R. Chelikowsky J. Chem. Phys., 115 (2001), p. 4322

[44] P. Calaminici; K. Jug; A.M. Köster J. Chem. Phys., 111 (1999), p. 4613

[45] S.J.A.V. Gisbergen; J.M. Pacheco; E.J. Baerends Phys. Rev. A, 63 (2001), p. 063201

[46] V.V. Kresin Physics Reports, 220 (1992), p. 1

[47] S.A. Blundell; C. Guet Zeit. Phys. D, 33 (1995), p. 153

[48] V.V. Kresin Phys. Rep., 220 (1990), p. 1

[49] E. Cottancin; M. Pellarin; J. Lermé; B. Baguenard; B. Palpant; J.L. Vialle; M. Broyer J. Chem. Phys., 107 (1997), p. 757

[50] I. Vasiliev; J.R. Chelikowsky Phys. Rev. Lett., 78 (1997), p. 4805

[51] K. Jackson; M. Pederson; C.-Z. Wang; K.-M. Ho Phys. Rev. A, 59 (1999), p. 3685

[52] K. Deng; J. Yang; C.T. Chan Phys. Rev. A, 61 (2000), p. 025201

[53] A.A. Shvartsburg; R.R. Hudgins; P. Dugourd; M.F. Jarrold Chem. Soc. Rev., 30 (2001), p. 26

[54] D. Jonsson; P. Norman; K. Ruud; H. Agren; T. Helgaker J. Chem. Phys., 109 (1998), p. 572

[55] K. Ruud; D. Jonsson; P.R. Taylor J. Chem. Phys., 114 (2001), p. 4331

[56] L.-S. Wang; O. Cheshnovsky; R.E. Smalley; J.P. Carpenter; S.J. Hwu J. Chem. Phys., 96 (1992), p. 4028

[57] B. Palpant; A. Otake; F. Hayakawa; Y. Negishi; G.H. Lee; A. Nakajima; K. Kaya Phys. Rev. B, 60 (1999), p. 4509

[58] R.C. Haddon; A.F. Hebard; M.J. Rosseinski; D.W. Murphy; S.J. Duclos; K.B. Lyons; B. Miller; J.M. Rosamilia; R.M. Fleming; A.R. Kortan; S.H. Glarum; A.V. Makhija; A.J. Muller; R.H. Eick; S.M. Zahurak; R. Tycko; G. Daddagh; F.A. Thiel Nature (London), 350 (1991), p. 320

[59] D.W. Murphy; M.J. Rosseinsky; R.M. Fleming; R. Tycko; A.P. Ramirez; R.C. Haddon; T. Siegrist; G. Dabbagh; J.C. Tully; R.E. Walstedt J. Phys. Chem. Solids, 53 (1992), p. 1321

[60] I. Compagnon; R. Antoine; D. Rayane; P. Dugourd; M. Broyer Eur. Phys. J. D, 16 (2001), p. 365

[61] R. Antoine; D. Rayane; P. Dugourd; E. Benichou; M. Broyer Eur. Phys. J. D, 12 (2000), p. 147

[62] P. Dugourd; R. Antoine; D. Rayane; I. Compagnon; M. Broyer J. Chem. Phys., 114 (2001), p. 1970

[63] U. Zimmermann; N. Malinowski; A. Burkhardt; T.P. Martin Carbon, 33 (1995), p. 995

[64] V.E. Wrede Z. Phys., 44 (1927), p. 261

[65] D. Rayane; R. Antoine; P. Dugourd; M. Broyer J. Chem. Phys., 113 (2000), p. 4501

[66] E.C. Honea; M.L. Homer; P. Labastie; R.L. Whetten Phys. Rev. Lett., 63 (1989), p. 394

[67] G. Durand; F. Spiegelmann; P. Poncharal; P. Labastie; J.M. L'Hermite; M. Sence J. Chem. Phys., 110 (1999), p. 7884

[68] G. Durand; J. Giraud-Girard; D. Maynau; F. Spielgelmann; F. Calvo J. Chem. Phys., 110 (1999), p. 7871

[69] S.-L. Ren; K.-A. Wang; P. Zhou; Y. Wang; A.M. Rao; M.S. Meier; J.P. Selegue; P.C. Eklund Appl. Phys. Lett., 61 (1992), p. 124

[70] E. Sohmen; J. Fink; W. Krätschmer Z. Phys. B, 86 (1992), p. 87

[71] J. Baker; P.W. Fowler; P. Lazzeretti; M. Malagoli; R. Zanasi Chem. Phys. Lett., 184 (1991), p. 182

[72] F. Willaime; L.M. Falicov J. Chem. Phys., 98 (1993), p. 6369

[73] B. Shanker; J. Applequist J. Phys. Chem., 98 (1994), p. 6486

[74] N. Matsuzawa; D.A. Dixon J. Phys. Chem., 96 (1992), p. 6241

[75] S. Guha; J. Menéndez; J.B. Page; G.B. Adams Phys. Rev. B, 53 (1996), p. 13 (106)

[76] Z. Shuai; J.L. Brédas Phys. Rev. B, 46 (1992), p. 16135

  • Ralia R. Shayakhmetova; Alina A. Tukhbatullina; Guzel G. Salikhova; Denis Sh. Sabirov Polarizability of exohedral lithium derivatives of fullerene C 60, Fullerenes, Nanotubes and Carbon Nanostructures (2024), p. 1 | DOI:10.1080/1536383x.2024.2441892
  • Filip Rivic; Andreas Lehr; Rolf Schäfer Dielectric Behavior and Prolate Growth Patterns of Silicon Clusters SiN with N = 12–30 by Cryogenic Electric Beam Deflection, The Journal of Physical Chemistry A, Volume 128 (2024) no. 10, p. 1853 | DOI:10.1021/acs.jpca.3c08432
  • J.A. Leiro Effect of self-interaction corrections (SIC) on physical properties of small Al, Ag and Ni nanoparticles, Solid State Communications, Volume 371 (2023), p. 115278 | DOI:10.1016/j.ssc.2023.115278
  • Denis Sh. Sabirov; Alina A. Tukhbatullina Distributed Polarizability Model for Covalently Bonded Fullerene Nanoaggregates: Origins of Polarizability Exaltation, Nanomaterials, Volume 12 (2022) no. 24, p. 4404 | DOI:10.3390/nano12244404
  • Denis Sh. Sabirov Rules of fullerene polarizability, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 28 (2020) no. 1, p. 71 | DOI:10.1080/1536383x.2019.1671369
  • Alina A. Tukhbatullina; Edward M. Khamitov; Denis Sh. Sabirov Distributed polarizability of fullerene [2+1]-adducts C60X (n = 1 and 2) with symmetric addends X  = CH2 and O: A fresh view on the effect of positional isomerism, Computational and Theoretical Chemistry, Volume 1149 (2019), p. 31 | DOI:10.1016/j.comptc.2018.12.017
  • Maryam Anafcheh; Fereshteh Naderi; Fatemeh Ektefa; Reza Ghafouri; Mansour Zahedi Polarizability of the Si60H60 Derivatives Containing Epoxide Moieties (Si60H60−2nOn with n up to 30): A DFT Study, Journal of Cluster Science, Volume 29 (2018) no. 5, p. 889 | DOI:10.1007/s10876-018-1365-7
  • Deb Sankar De; Santanu Saha; Luigi Genovese; Stefan Goedecker Influence of an external electric field on the potential-energy surface of alkali-metal-decorated C60, Physical Review A, Volume 97 (2018) no. 6 | DOI:10.1103/physreva.97.063401
  • Evgeniy Yu. Pankratyev; Alina A. Tukhbatullina; Denis Sh. Sabirov Dipole polarizability, structure, and stability of [2+2]-linked fullerene nanostructures (C 60 ) n ( n ≤7), Physica E: Low-dimensional Systems and Nanostructures, Volume 86 (2017), p. 237 | DOI:10.1016/j.physe.2016.10.042
  • Denis Sh. Sabirov; Anton O. Terentyev; Igor S. Shepelevich Comment on “Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells – a DFT study” by A. Mohajeri and A. Omidvar, Phys. Chem. Chem. Phys., 2015, 17, 22367, Physical Chemistry Chemical Physics, Volume 18 (2016) no. 5, p. 4216 | DOI:10.1039/c5cp05408g
  • Denis Sh. Sabirov; Eiji Ōsawa Dipole polarizability of nanodiamonds and related structures, Diamond and Related Materials, Volume 55 (2015), p. 64 | DOI:10.1016/j.diamond.2015.03.009
  • Álvaro Carrera; Ernesto Marceca Electric Deflection of Middle-Size Ammonia Clusters Containing (e–, Na+) Pairs, The Journal of Physical Chemistry A, Volume 119 (2015) no. 18, p. 4207 | DOI:10.1021/acs.jpca.5b00447
  • S. M. Pittman; E. J. Heller The Degree of Ergodicity of ortho- and para-Aminobenzonitrile in an Electric Field, The Journal of Physical Chemistry A, Volume 119 (2015) no. 42, p. 10563 | DOI:10.1021/acs.jpca.5b04838
  • D.Sh. Sabirov A correlation between the mean polarizability of the “kinked” polycyclic aromatic hydrocarbons and the number of H…H bond critical points predicted by Atoms-in-Molecules theory, Computational and Theoretical Chemistry, Volume 1030 (2014), p. 81 | DOI:10.1016/j.comptc.2014.01.001
  • Denis Sh. Sabirov; Anton O. Terentyev; Igor S. Shepelevich; Ramil G. Bulgakov Inverted thermochemistry of “norbornadiene–quadricyclane” molecular system inside fullerene nanocages, Computational and Theoretical Chemistry, Volume 1045 (2014), p. 86 | DOI:10.1016/j.comptc.2014.07.003
  • Denis Sh. Sabirov; Anton O. Terentyev; Ramil G. Bulgakov Polarizability of fullerene [2+2]-dimers: a DFT study, Physical Chemistry Chemical Physics, Volume 16 (2014) no. 28, p. 14594 | DOI:10.1039/c3cp55528c
  • Denis Sh. Sabirov Polarizability as a landmark property for fullerene chemistry and materials science, RSC Adv., Volume 4 (2014) no. 85, p. 44996 | DOI:10.1039/c4ra06116k
  • M. I. A. Oliveira; R. Rivelino; F. de Brito Mota; G. K. Gueorguiev Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages, The Journal of Physical Chemistry C, Volume 118 (2014) no. 10, p. 5501 | DOI:10.1021/jp409967a
  • Denis Sh. Sabirov Polarizability of C60 fullerene dimer and oligomers: the unexpected enhancement and its use for rational design of fullerene-based nanostructures with adjustable properties, RSC Advances, Volume 3 (2013) no. 42, p. 19430 | DOI:10.1039/c3ra42498g
  • D.Sh. Sabirov; A.A. Tukhbatullina; R.G. Bulgakov Dependence of static polarizabilities of C60Xn fullerene cycloadducts on the number of added groups X=CH2 and NH (n=1–30), Computational and Theoretical Chemistry, Volume 993 (2012), p. 113 | DOI:10.1016/j.comptc.2012.05.041
  • J. Bulthuis; V. V. Kresin Beam broadening of polar molecules and clusters in deflection experiments, The Journal of Chemical Physics, Volume 136 (2012) no. 1 | DOI:10.1063/1.3673890
  • D.Sh. Sabirov; R.G. Bulgakov Polarizability of oxygen-containing fullerene derivatives С60Оn and С70О with epoxide/oxidoannulene moieties, Chemical Physics Letters, Volume 506 (2011) no. 1-3, p. 52 | DOI:10.1016/j.cplett.2011.02.040
  • J. Bowlan; A. Liang; W. A. de Heer How Metallic are Small Sodium Clusters?, Physical Review Letters, Volume 106 (2011) no. 4 | DOI:10.1103/physrevlett.106.043401
  • Roman Rabinovitch; Klavs Hansen; Vitaly V. Kresin Slow Electron Attachment as a Probe of Cluster Evaporation Processes, The Journal of Physical Chemistry A, Volume 115 (2011) no. 25, p. 6961 | DOI:10.1021/jp112192a
  • Casey Stark; Vitaly V. Kresin Critical sizes for the submersion of alkali clusters into liquid helium, Physical Review B, Volume 81 (2010) no. 8 | DOI:10.1103/physrevb.81.085401
  • Álvaro Carrera; Marcos Mobbili; Ernesto Marceca Electric Susceptibility of Sodium-Doped Water Clusters by Beam Deflection, The Journal of Physical Chemistry A, Volume 113 (2009) no. 12, p. 2711 | DOI:10.1021/jp809411p
  • Roman Rabinovitch; Chunlei Xia; Vitaly V. Kresin Evaporative attachment of slow electrons to alkali-metal nanoclusters, Physical Review A, Volume 77 (2008) no. 6 | DOI:10.1103/physreva.77.063202
  • Jacek Kłos; Piotr S. Żuchowski; Łukasz Rajchel; Grzegorz Chałasiński; Małgorzata M. Szczęśniak Nonadditive interactions in ns2 and spin-polarized ns metal atom trimers, The Journal of Chemical Physics, Volume 129 (2008) no. 13 | DOI:10.1063/1.2982801
  • J. Bulthuis; J. A. Becker; R. Moro; V. V. Kresin Orientation of dipole molecules and clusters upon adiabatic entry into an external field, The Journal of Chemical Physics, Volume 129 (2008) no. 2 | DOI:10.1063/1.2946712
  • M Broyer; R Antoine; I Compagnon; D Rayane; P Dugourd From clusters to biomolecules: electric dipole, structure and dynamics, Physica Scripta, Volume 76 (2007) no. 4, p. C135 | DOI:10.1088/0031-8949/76/4/n05
  • F. Rabilloud; R. Antoine; M. Broyer; I. Compagnon; P. Dugourd; D. Rayane; F. Calvo; F. Spiegelman Electric Dipoles and Susceptibilities of Alkali Clusters/Fullerene Complexes:  Experiments and Simulations, The Journal of Physical Chemistry C, Volume 111 (2007) no. 48, p. 17795 | DOI:10.1021/jp071126m
  • Ph. Dugourd; R. Antoine; M. Abd El Rahim; D. Rayane; M. Broyer; F. Calvo Molecular dynamics simulations of molecular beam deflection experiments, Chemical Physics Letters, Volume 423 (2006) no. 1-3, p. 13 | DOI:10.1016/j.cplett.2006.03.036
  • Li Fei; Huang Yi-Dong; Zhang Wei; Peng Jiang-De Spatially Inhomogeneous Gain Modification in Photonic Crystals, Chinese Physics Letters, Volume 23 (2006) no. 8, p. 2117 | DOI:10.1088/0256-307x/23/8/043
  • Ramiro Moro; Roman Rabinovitch; Chunlei Xia; Vitaly V. Kresin Electric Dipole Moments of Water Clusters from a Beam Deflection Measurement, Physical Review Letters, Volume 97 (2006) no. 12 | DOI:10.1103/physrevlett.97.123401
  • R. Antoine; M. Abd El Rahim; M. Broyer; D. Rayane; Ph. Dugourd Asymmetric Top Rotors in Electric Fields. II. Influence of Internal Torsions in Molecular Beam Deflection Experiments, The Journal of Physical Chemistry A, Volume 110 (2006) no. 33, p. 10006 | DOI:10.1021/jp0614345
  • V. S. Demidenko; N. L. Zaitsev; I. A. Nechaev; A. V. Nyavro; T. V. Men’shchikova; L. F. Skorentsev Changes in the electronic structure and energy of nanoclusters of 3d metals and TiFe and TiNi compounds upon BCC-HCP transformations, The Physics of Metals and Metallography, Volume 101 (2006) no. 2, p. 124 | DOI:10.1134/s0031918x06020050
  • P. Poulain; R. Antoine; M. Broyer; P. Dugourd Monte Carlo simulations of flexible molecules in a static electric field: electric dipole and conformation, Chemical Physics Letters, Volume 401 (2005) no. 1-3, p. 1 | DOI:10.1016/j.cplett.2004.11.025
  • M. Aubert-Frécon; F. Rabilloud; A.R. Allouche; D. Rayane; R. Antoine; M. Broyer; Ph. Dugourd Existence of weakly bound states for metal–benzene molecules confirmed from a long-range model, Chemical Physics Letters, Volume 405 (2005) no. 4-6, p. 422 | DOI:10.1016/j.cplett.2005.02.071
  • V. S. Demidenko; N. L. Zaitsev; A. V. Nyavro; T. V. Menshchikova Electronic structure and energy ratios of Ni3Al clusters in TiNi nanoparticles with an impurity Al atom, Russian Physics Journal, Volume 48 (2005) no. 10, p. 1073 | DOI:10.1007/s11182-006-0027-7
  • M. Abd El Rahim; R. Antoine; L. Arnaud; M. Broyer; D. Rayane; A. Viard; Ph. Dugourd Time-of-flight mass spectrometer coupled to a position sensitive detection, The European Physical Journal D, Volume 34 (2005) no. 1-3, p. 15 | DOI:10.1140/epjd/e2005-00101-2
  • S. N. Shore; R. D. Gehrz Photo-ionization induced rapid grain growth in novae, Astronomy Astrophysics, Volume 417 (2004) no. 2, p. 695 | DOI:10.1051/0004-6361:20034243
  • M. Abd El Rahim; R. Antoine; L. Arnaud; M. Barbaire; M. Broyer; Ch. Clavier; I. Compagnon; Ph. Dugourd; J. Maurelli; D. Rayane Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments, Review of Scientific Instruments, Volume 75 (2004) no. 12, p. 5221 | DOI:10.1063/1.1813112
  • Michael Filatov; Dieter Cremer Calculation of electric properties using regular approximations to relativistic effects: The polarizabilities of RuO4, OsO4, and HsO4 (Z=108), The Journal of Chemical Physics, Volume 119 (2003) no. 3, p. 1412 | DOI:10.1063/1.1580473
  • Isabelle Compagnon; Rodolphe Antoine; Driss Rayane; Michel Broyer; Philippe Dugourd Permanent Electric Dipole of Gas-Phase p-Amino Benzoic Acid, The Journal of Physical Chemistry A, Volume 107 (2003) no. 17, p. 3036 | DOI:10.1021/jp022247j

Cité par 44 documents. Sources : Crossref

Commentaires - Politique