[Le rôle des clusters d'argent en photographie]
Le principe de la photographie argentique est basée sur la photosensibilité de petits cristaux d'halogénure d'argent. La lumière génère des clusters de quelques atomes d'argent sur les cristaux. L'ensemble constitue l'image latente invisible d'intensité extrêmement faible. Le développement consiste à convertir chimiquement en particules d'argent métallique les cristaux contenant un cluster de nucléarité supercritique d'atomes d'argent photoinduits et à transformer catalytiquement l'image latente en une image visible. Le dopage des cristaux par un capteur sélectif anti-oxydant permet d'empêcher la perte des électrons, qui sinon se recombineraient rapidement avec les trous, et d'atteindre le rendement quantique intégral en atomes formés par photon absorbé.
The principle of silver photography is based on the photosensitivity of minute silver halide crystals. The light generates clusters of a few silver atoms on the crystals. Their ensemble constitutes the latent image of extremely weak intensity and invisible. The development consists of converting chemically into metal particles the crystals containing a cluster with a supercritical number of photoinduced silver atoms and of transforming catalytically the latent image into a visible picture. Crystal doping by a selective anti-oxidant scavenger permits one to avoid the loss of electrons, which otherwise recombine rapidly with holes, and to reach the integral quantum yield of atoms produced per photon absorbed.
Accepté le :
Publié le :
Jacqueline Belloni 1
@article{CRPHYS_2002__3_3_381_0, author = {Jacqueline Belloni}, title = {The role of silver clusters in photography}, journal = {Comptes Rendus. Physique}, pages = {381--390}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01321-X}, language = {en}, }
Jacqueline Belloni. The role of silver clusters in photography. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 381-390. doi : 10.1016/S1631-0705(02)01321-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01321-X/
[1] Nature, 376 (1990), p. 115
[2] Niépce ou l'invention de la photographie, Belin, 1999
[3] J. Phys. Soc. Jpn., 17 (1962), p. 975
[4] Radiochem. Radioanal. Lett., 13 (1973), p. 329
[5] Ber. Bunsenges. Phys. Chem., 81 (1977), p. 556
[6] Chem. Rev., 86 (1986), p. 1046
[7] Chimia, 42 (1988), p. 357
[8] Clusters of Atoms and Molecules, Springer, 1994
[9] Theory of the Photographic Process (T.H. James, ed.), Mac Millan, NY, 1977
[10] Chimie et physique photographiques, Éditions de l'Usine Nouvelle, 1987
[11] Photogr. Sci. Eng., 26 (1982), p. 111
[12] Photogr. Sci. Eng., 27 (1983), p. 75
[13] Phys. Today, 42 (1989), p. 36
[14] Photographic Sensivity. Theory and Mechanisms, Oxford University Press, 1995
[15] Photogr. Sci. Eng., 26 (1982), p. 1
[16] Proc. Roy. Soc. London Sect. A, 164 (1938), p. 485
[17] Historique et description des procédés du daguerréotype, A. Giroux, 1839 (or Rumeur des Ages, 1982)
[18] Contribution of Clusters Physics to Material Science and Technology (J. Davenas; P.M. Rabette, eds.), NATO ASI Series E, Applied Sciences, 104, Nijohff, 1986, p. 311
[19] Growth and Properties of Metal Clusters (J. Bourdon, ed.), Elsevier, Amsterdam, 1980, p. 303
[20] Z. Phys. D, 22 (1992), p. 517
[21] Chem. Phys. Lett., 192 (1992), p. 122
[22] Z. Phys. D, 26 (1993), pp. 287-289
[23] Phys. Rev. Lett., 55 (1985), p. 3002
[24] , Proc. 47th IS&T Conf., I, 1994, p. 54
[25] J. Photogr. Sci., 31 (1982), p. 148
[26] Photogr. Sci. Eng., 25 (1981), p. 170
[27] Proc. IS&T'S 48th Annual Conference, Washington, 1995, p. 136
[28] Contribution of Clusters Physics to Material Science and Technology (J. Davenas; P.M. Rabette, eds.), NATO ASI Series E, Applied Sciences, 104, Nijohff, 1986, p. 195
[29] Photogr. Sci. Eng., 12 (1968), p. 138
[30] Radiat. Phys. Chem., 34 (1989), pp. 605-617
[31] Z. Phys. D, 26 (1993), pp. 82-86
[32] Radiation Chemistry: Present Status and Future Trends (C.D. Jonah; M. Rao, eds.), CRC, 2001, pp. 411-452
[33] Nature, 402 (1999), pp. 865-867
[34] J. Phys. Chem., 93 (1989), pp. 409-414
- A color-coordinated approach to the flow synthesis of silver nanoparticles with custom morphologies, Nanoscale Advances, Volume 7 (2025) no. 4, p. 1163 | DOI:10.1039/d4na00941j
- Facile Scale-Up of the Flow Synthesis of Silver Nanostructures Based on Norrish Type I Photoinitiators, Molecules, Volume 28 (2023) no. 11, p. 4445 | DOI:10.3390/molecules28114445
- Does the Mott problem extend to Geiger counters?, Open Physics, Volume 21 (2023) no. 1 | DOI:10.1515/phys-2023-0125
- , Practical Holography XXXII: Displays, Materials, and Applications (2018), p. 12 | DOI:10.1117/12.2286668
- Chemical Synthesis and Characterization of Carbon Supported Palladium Electro-Catalysts, International Journal of Nanoscience, Volume 16 (2017) no. 05n06, p. 1750007 | DOI:10.1142/s0219581x17500077
- Some Science Behind the Daguerreotype: Nanometer and Sub-micrometer Realities On and Beneath the Surface, Nanoscience and Cultural Heritage (2016), p. 123 | DOI:10.2991/978-94-6239-198-7_5
- Nanotechnology: from the ancient time to nowadays, Foundations of Chemistry, Volume 17 (2015) no. 3, p. 187 | DOI:10.1007/s10698-015-9235-y
- M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models, Journal of Physics: Condensed Matter, Volume 22 (2010) no. 43, p. 435001 | DOI:10.1088/0953-8984/22/43/435001
- Redox Behavior of Nanoparticules: Nonextensive Thermodynamics Approach, The Journal of Physical Chemistry C, Volume 112 (2008) no. 32, p. 12116 | DOI:10.1021/jp801040u
- The geometric, electronic, and magnetic properties of Ag5X+ (X=Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) clusters, The Journal of Chemical Physics, Volume 124 (2006) no. 18 | DOI:10.1063/1.2191495
- Photography: enhancing sensitivity by silver-halide crystal doping, Radiation Physics and Chemistry, Volume 67 (2003) no. 3-4, p. 291 | DOI:10.1016/s0969-806x(03)00054-9
Cité par 11 documents. Sources : Crossref
Commentaires - Politique