Comptes Rendus
Voltage addressable nanomemories in DNA?
[Nanomémoires adressables en ADN ?]
Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 391-396.

Il est possible de concevoir des courtes séquences d'ADN simple-brin présentant plusieurs structures secondaires stables (> heures). En principe, de telles molécules pourraient être utilisées comme des nanomémoires si elles pouvaient être facilement passées d'un état piégé à un autre. Nous proposons ici que le travail nécessaire pour placer la molécule dans un état piégé particulier peut être fourni par sa propre synthèse. Prolongeant cette idée, nous montrons qu'une faible tension (<1 V) pourrait induire le basculement structural d'une molécule bistable à volonté, en la forçant à passer au travers d'un nanopore et à se replier alternativement ensuite à partir de l'une ou l'autre extrémité.

Short single-stranded DNA (or RNA) molecules can be designed to have several long lived (> hours) secondary structures. In principle, such molecules could be used as nanomemories if they could be easily induced to switch between trapped states. We propose here that the necessary work required to drive the molecule into one particular trapped state can be provided by its own synthesis. Following this idea, we argue that a low voltage (<1 V) may induce a bistable DNA molecule to switch structure at will, by forcing it to thread through a nanopore and refold alternatively from either of its ends.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-0705(02)01315-4
Keywords: nanomemory, nanopore, DNA synthesis
Mot clés : nanomémoire, nanopore, synthèse de l'ADN
Hervé Isambert 1

1 Laboratoire de dynamique des fluides complexes, Institut de physique, 3, rue de l'Université, 67000 Strasbourg, France
@article{CRPHYS_2002__3_3_391_0,
     author = {Herv\'e Isambert},
     title = {Voltage addressable nanomemories in {DNA?}},
     journal = {Comptes Rendus. Physique},
     pages = {391--396},
     publisher = {Elsevier},
     volume = {3},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01315-4},
     language = {en},
}
TY  - JOUR
AU  - Hervé Isambert
TI  - Voltage addressable nanomemories in DNA?
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 391
EP  - 396
VL  - 3
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01315-4
LA  - en
ID  - CRPHYS_2002__3_3_391_0
ER  - 
%0 Journal Article
%A Hervé Isambert
%T Voltage addressable nanomemories in DNA?
%J Comptes Rendus. Physique
%D 2002
%P 391-396
%V 3
%N 3
%I Elsevier
%R 10.1016/S1631-0705(02)01315-4
%G en
%F CRPHYS_2002__3_3_391_0
Hervé Isambert. Voltage addressable nanomemories in DNA?. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 391-396. doi : 10.1016/S1631-0705(02)01315-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01315-4/

[1] R.F. Service Assembling nanocircuits from the bottom up (New focus), Science, Volume 293 (2001), pp. 782-785

[2] C.P. Collier; G. Mattersteig; E.W. Wong; Y. Luo; K. Beverly; J. Sampaio; F.M. Raymo; J.F. Stoddart; J.R. Heath A [2]Catenane-based solid state electronically reconfigurable switch, Science, Volume 289 (2000), pp. 1172-1175

[3] A.M. Brouwer; C. Frochot; F.G. Gatti; D.A. Leigh; L. Mottier; F. Paolucci; S. Roffia; G.W.H. Wurpel Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle, Science, Volume 291 (2001), pp. 2124-2128

[4] J.-P. Sauvage A light-driven linear motor at the molecular level, Science, Volume 291 (2001), pp. 2105-2106 (and references therein)

[5] G. Bonnet; O. Krichevsky; A. Libchaber Kinetics of conformational fluctuations in DNA hairpin-loops, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 8602-8606

[6] C.K. Biebricher; R. Luce In vitro recombination and terminal elongation of RNA by Qβ replicase, EMBO J., Volume 11 (1992), pp. 5129-5135

[7] A. Xayaphoummine, H. Isambert, in preparation

[8] B. Yurke; A.J. Turberfield; A.P. Mills; F.C. Simmel; J.L. Neumann A DNA-fuelled molecular machine made of DNA, Nature, Volume 406 (2000), pp. 605-608

[9] T. Pan; X. Fang; T. Sosnick Pathway modulation, circular permutation and rapid RNA folding under kinetic control, J. Mol. Biol., Volume 286 (1999), pp. 721-731

[10] H. Isambert; E. Siggia Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 6515-6520

[11] B. Essevaz-Roulet; U. Bockelmann; F. Heslot Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 11935-11940

[12] J. Liphardt; B. Onoa; S.B. Smith; I. Tinoco; C. Bustamante Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737

[13] D. Long; J.-L. Viovy; A. Ajdari Phys. Rev. Lett., 76 (1996), pp. 3858-3861

[14] J. Kasianowicz; E. Brandin; D. Branton; D. Dreamer Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), pp. 13770-13773

[15] A. Meller; L. Nivon; D. Branton Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett., Volume 86 (2001) no. 15, pp. 3435-3438

[16] D.K. Lubensky; D.R. Nelson Driven polymer translocation through a narrow pore, Biophys. J., Volume 77 (1999), pp. 1824-1838

[17] A. Meller, private communication

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping

Simona Cocco; John F. Marko; Rémi Monasson

C. R. Phys (2002)