[Les phases surprenantes des petits systèmes]
Small systems, notably clusters of tens or hundreds of atoms or molecules, exhibit forms almost precisely analogous to the phases of bulk systems. However their small sizes make these systems behave in ways quite different from their bulk counterparts. These differences can be elucidated and related to the behavior of bulk systems. Understanding these relationships gives us new insights into the traditional, classical bulk phase transitions, and shows us some unique properties of phases and phase equilibrium of nanoscale systems.
Les petits systèmes, et plus particulièrement les agrégats de quelques dizaines ou de quelques centaines d'atomes ou de molécules, présentent des formes sensiblement proches des celles que l'on rencontrent dans les systèmes macroscopiques. Cependant leur petite taille confèrent à ces systèmes des comportements tout à fait différents de ceux du solide massif correspondant. Ces différences peuvent être comprises et reliées au comportement de ce solide. La compréhension de ces liens donne un nouvel éclairage sur les traditionnelles transitions de phase dans les solides et montre bien les propriétés uniques des phases et de l'équilibre entre phases dans ces systèmes nanoscopiques.
Accepté le :
Publié le :
Mots-clés : systm̀es nanoscopiques, équilibre entre phases
R. Berry 1
@article{CRPHYS_2002__3_3_319_0, author = {R. Berry}, title = {The amazing phases of small systems}, journal = {Comptes Rendus. Physique}, pages = {319--326}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01324-5}, language = {en}, }
R. Berry. The amazing phases of small systems. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 319-326. doi : 10.1016/S1631-0705(02)01324-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01324-5/
[1] Accts. Chem. Res., 31 (1999), p. 91
[2] J. Chem. Phys., 101 (1994), p. 1460
[3] Theory of Atomic and Molecular Clusters (J. Jellinek, ed.), Springer-Verlag, Berlin, 1999, p. 1
[4] J. Chem. Phys., 103 (1995), p. 1061
[5] J. Chem. Phys., 114 (2001), p. 6816
[6] J. Chem. Phys., 63 (1975), p. 2045
[7] J. Chem. Phys., 84 (1986), p. 2783
[8] J. Chem. Phys., 87 (1987), p. 545
[9] Phys. Rev. A, 45 (1992), p. 7969
[10] Phys. Rev. Lett., 71 (1993), p. 3987
[11] Phys. Rev. E, 49 (1994), p. 1895
[12] Phys. Rev. Lett., 73 (1994), p. 2875
[13] J. Chem. Phys., 78 (1987), p. 5067
[14] , NATO ASI Ser. B, 158, 1987, p. 37
[15] Z. Phys. D, 40 (1997), p. 215
[16] J. Chem. Phys., 110 (1999), p. 3887
[17] Eur. Phys. J. D, 9 (1999), p. 445
[18] J. Chem. Phys., 118 (2001), p. 8583
[19] Phys. Rev. B (2001) (in press)
- Machine learning to identify variables in thermodynamically small systems, Computers Chemical Engineering, Volume 141 (2020), p. 106989 | DOI:10.1016/j.compchemeng.2020.106989
- Recent Developments in Phase Transitions in Small/Nano Systems, Advances in Phytonanotechnology (2019), p. 1 | DOI:10.1016/b978-0-12-815322-2.00001-8
- Ionic liquid induced surface exclusion and anomalous first-order phase transition in Laponite dispersions, Journal of Molecular Liquids, Volume 207 (2015), p. 177 | DOI:10.1016/j.molliq.2015.03.034
- Equilibrium Shape of Colloidal Crystals, Langmuir, Volume 31 (2015) no. 42, p. 11428 | DOI:10.1021/acs.langmuir.5b02952
- Stability and thermal evolution of transition metal and silicon clusters, Russian Chemical Reviews, Volume 84 (2015) no. 5, p. 498 | DOI:10.1070/rcr4411
- Confined Fluids: Structure, Properties and Phase Behavior, Advances in Chemical Physics, Volume 156 (2014), p. 197 | DOI:10.1002/9781118949702.ch5
- Pushing Nanoionics to the Limits: Charge Carrier Chemistry in Extremely Small Systems, Chemistry of Materials, Volume 26 (2014) no. 1, p. 348 | DOI:10.1021/cm4021657
- Effects of the Attractive Potential Range on the Phase Behavior of Small Clusters of Colloidal Particles, Journal of Chemical Engineering Data, Volume 59 (2014) no. 10, p. 3105 | DOI:10.1021/je500178w
- Thermodynamics of Finite Size Systems, Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles (2014), p. 143 | DOI:10.1039/bk9781849739078-00143
- Phase behavior of the 38-atom Lennard-Jones cluster, The Journal of Chemical Physics, Volume 140 (2014) no. 10 | DOI:10.1063/1.4866810
- Onset of the crystalline phase in small assemblies of colloidal particles, Applied Physics Letters, Volume 102 (2013) no. 20 | DOI:10.1063/1.4807676
- Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy, Nature Chemistry, Volume 5 (2013) no. 5, p. 395 | DOI:10.1038/nchem.1622
- Colloidal cluster crystallization dynamics, The Journal of Chemical Physics, Volume 137 (2012) no. 13 | DOI:10.1063/1.4754870
- Ergodic Problems for Real Complex Systems in Chemical Physics, Advancing Theory for Kinetics and Dynamics of Complex, Many‐Dimensional Systems: Clusters and Proteins, Volume 145 (2011), p. 171 | DOI:10.1002/9781118087817.ch5
- Thermodynamic Stability of Transition States in Nanosystems, Journal of Statistical Physics, Volume 136 (2009) no. 1, p. 117 | DOI:10.1007/s10955-009-9765-6
- Nanosolids, Slushes, and Nanoliquids: Characterization of Nanophases in Metal Clusters and Nanoparticles, Journal of the American Chemical Society, Volume 130 (2008) no. 38, p. 12698 | DOI:10.1021/ja802389d
- Algebraic approach to two-dimensional systems: Shape phase transitions, monodromy, and thermodynamic quantities, Physical Review A, Volume 77 (2008) no. 3 | DOI:10.1103/physreva.77.032115
- Anomalous heat capacity of nanoparticles, Russian Journal of Physical Chemistry B, Volume 1 (2007) no. 1, p. 74 | DOI:10.1134/s1990793107010083
- Insights into phase transitions from phase changes of clusters, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 39 (2006) no. 9, p. R167 | DOI:10.1088/0953-4075/39/9/r01
- Anomalous heat capacity of nanoparticles, Physics Letters A, Volume 357 (2006) no. 3, p. 236 | DOI:10.1016/j.physleta.2006.04.050
- Melting, freezing and nucleation in nanoclusters of potassium chloride, The European Physical Journal D, Volume 40 (2006) no. 1, p. 115 | DOI:10.1140/epjd/e2006-00128-9
- Spectroscopic signatures of nonrigidity: Algebraic analyses of infrared and Raman transitions in nonrigid species, Chemical Physics Letters, Volume 414 (2005) no. 4-6, p. 398 | DOI:10.1016/j.cplett.2005.07.119
Cité par 22 documents. Sources : Crossref
Commentaires - Politique