[Agrégats multichargés]
We review progress made in understanding Coulomb explosion of multiply charged atomic clusters. Their collision with highly charged atomic ions leads to clusters in charge states as high as z=10 with little vibrational excess energy; these systems approach the Rayleigh limit. Phase transitions become evident at higher excess energies. Numerous studies have been devoted to Cz+60, like collisions with surfaces, multi-coincidence fragmentation analysis and gas-phase reactions. Stability and decay of highly charged micrometer-sized droplets and of metal di- and trianions have been monitored in ion traps. Excitation by femtosecond laser pulses allows to unravel properties of highly charged transient cluster ions.
Cet article présente une revue des progrès obtenus dans la compréhension de l'explosion coulombienne des agrégats atomiques multichargés. Leur collision avec des ions atomiques hautement chargés conduit à des agrégats d'état de charge aussi élevé que z=10 et contenant un peu d'énergie vibrationelle en excès. Ces systèmes approchent la limite de Rayleigh. Des transitions de phase apparaissent de manière évidente pour des excès d'énergie plus élevés. De nombreuses études ont été consacrées aux Cz+60, concernant par exemple les collisions avec des surfaces, ou bien l'analyse en multicoincidence de la fragmentation, ou encore les réactions en phase gazeuse. La stabilité et la décroissance de micro-gouttes hautement chargées et d'agrégats métalliques deux et trois fois négativement chargés ont été examinées dans un piège à ions. L'excitation par lasers femtosecondes permet de différencier les propriétés de ces agrégats ionisés hautement chargés.
Accepté le :
Publié le :
Olof Echt 1 ; Paul Scheier 2 ; Tilmann D. Märk 2
@article{CRPHYS_2002__3_3_353_0, author = {Olof Echt and Paul Scheier and Tilmann D. M\"ark}, title = {Multiply charged clusters}, journal = {Comptes Rendus. Physique}, pages = {353--364}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01325-7}, language = {en}, }
Olof Echt; Paul Scheier; Tilmann D. Märk. Multiply charged clusters. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 353-364. doi : 10.1016/S1631-0705(02)01325-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01325-7/
[1] Philos. Mag. A, 14 (1882), p. 184
[2] Phys. Rev. Lett., 47 (1981), p. 160
[3] , Clusters of Atoms and Molecules II, 56, Springer-Verlag, Berlin, 1994, p. 183
(H. Haberland, ed.)[4] Phys. Lett., 285 (1997), p. 245 (Physics Reports-Review Section of)
[5] Z. Phys. D, 31 (1994), p. 245
[6] Phys. Rev. A, 46 (1992), p. 7028
[7] Ann. Phys., 6 (1997), p. 403
[8] Z. Phys. D, 31 (1994), p. 191
[9] Phys. Rev. Lett., 74 (1995), p. 3784
[10] Phys. Rev. Lett., 87 (2001), p. 153402
[11] Z. Phys. D, 40 (1997), p. 334
[12] J. Chem. Phys., 102 (1995), p. 763
[13] J. Chem. Phys., 100 (1994), p. 8277
[14] Phys. Rev. A, 6305 (2001), p. 1201
[15] Phys. Rev. Lett., 81 (1998), p. 4612
[16] Z. Phys. D, 41 (1997), p. 219
[17] Phys. Rev. Lett., 87 (2001), p. 203401
[18] Chem. Phys. Lett., 348 (2001), p. 194
[19] Chem. Phys. Lett., 195 (1992), p. 543
[20] Phys. Rev. Lett., 73 (1994), p. 54
[21] Phys. Rev. Lett., 74 (1995), p. 3368
[22] J. Phys. Chem., 99 (1995), p. 15428
[23] Phys. Rev. Lett., 72 (1994), p. 1439
[24] Phys. Rev. A, 53 (1996), p. 615
[25] Phys. Rev. A, 56 (1997), p. 4799
[26] Phys. Rev. A, 62 (2000), p. 022707
[27] J. Chem. Phys., 95 (1991), p. 7008
[28] Chem. Phys. Lett., 194 (1992), p. 452
[29] Phys. Rev. Lett., 84 (2000), p. 2128
[30] D.M. Rayner, unpublished, 2002
[31] Phys. Rev. Lett., 67 (1991), p. 1242
[32] J. Am. Chem. Soc., 113 (1991), p. 6795
[33] Phys. Rev. Lett., 73 (1994), p. 2821
[34] Phys. Rev. Lett., 78 (1997), p. 4367
[35] Int. J. Mass Spectrom. Ion Proc., 192 (1999), p. 215
[36] Phys. Rev. A, 56 (1997), p. 3007
[37] J. Chem. Phys., 113 (2000), p. 5053
[38] D. Duft, Diploma Thesis, Freie Universität Berlin, Berlin, 1999
[39] Science, 270 (1995), p. 1160
[40] Phys. Rev. A, 6301 (2001), p. 2501
[41] J. Phys. Chem., 104 (2000), p. 1978
[42] J. Chem. Phys., 109 (1998), p. 2727
[43] Phys. Rev. A, 60 (1999), p. 3515
[44] Int. J. Mass Spectrom., 206 (2001), p. 63
[45] Philos. Mag. B, 79 (1999), p. 1343
[46] Phys. Rev. Lett., 86 (2001), p. 2996
[47] Phys. Rev. B, 61 (2000), p. R10587
[48] Chem. Phys. Lett., 321 (2000), p. 426
[49] Molecules and Clusters in Intense Laser Fields, Cambridge University Press, 2001, p. 272
[50] Nature, 370 (1994), p. 631
[51] Phys. Rev. A, 56 (1997), p. R2526
[52] Phys. Rev. Lett., 82 (1999), p. 3783
[53] Phys. Rev. Lett., 78 (1997), p. 2732
[54] Phys. Rev. Lett., 80 (1998), p. 261
[55] Phys. Rev. Lett., 85 (2000), p. 3640
[56] Phys. Rev. Lett., 87 (2001), p. 033401
[57] J. Phys. B, 29 (1996), p. 247
[58] Opt. Commun., 112 (1994), p. 21
[59] Phys. Rev. A, 57 (1998), p. R4094
[60] Phys. Rev. A, 6201 (2000), p. 3201
[61] Phys. Rev. Lett., 88 (2002), p. 143401
- CO2 clusters: forming fragile dications in helium nanodroplets, Physica Scripta, Volume 100 (2025) no. 1, p. 015405 | DOI:10.1088/1402-4896/ad999a
- DFTB Simulation of Charged Clusters Using Machine Learning Charge Inference, Journal of Chemical Theory and Computation, Volume 20 (2024) no. 9, p. 4007 | DOI:10.1021/acs.jctc.4c00107
- Doubly charged dimers and trimers of heavy noble gases, Physical Chemistry Chemical Physics, Volume 26 (2024) no. 15, p. 11482 | DOI:10.1039/d4cp00465e
- Size limits and fission channels of doubly charged noble gas clusters, Physical Chemistry Chemical Physics, Volume 26 (2024) no. 18, p. 13923 | DOI:10.1039/d4cp00658e
- On the stabilization of the Li
-Li interaction by microsolvation with rare-gas atoms, Theoretical Chemistry Accounts, Volume 140 (2021) no. 6 | DOI:10.1007/s00214-021-02763-8 - Solvation of ions in helium, International Reviews in Physical Chemistry, Volume 39 (2020) no. 4, p. 465 | DOI:10.1080/0144235x.2020.1794585
- Solvation of Silver Ions in Noble Gases He, Ne, Ar, Kr, and Xe, The Journal of Physical Chemistry A, Volume 123 (2019) no. 48, p. 10426 | DOI:10.1021/acs.jpca.9b09496
- Unraveling the Metastability of Cn2+ (n = 2–4) Clusters, The Journal of Physical Chemistry Letters, Volume 10 (2019) no. 3, p. 581 | DOI:10.1021/acs.jpclett.8b03449
- Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials, Chemical Reviews, Volume 118 (2018) no. 11, p. 5755 | DOI:10.1021/acs.chemrev.7b00524
- Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K, Physics Reports, Volume 751 (2018), p. 1 | DOI:10.1016/j.physrep.2018.05.001
- Doubly charged coronene clusters—Much smaller than previously observed, The Journal of Chemical Physics, Volume 148 (2018) no. 17 | DOI:10.1063/1.5028393
- Coulomb explosion of vertically aligned carbon nanofibre induced by field electron emission, RSC Advances, Volume 7 (2017) no. 64, p. 40470 | DOI:10.1039/c7ra07474c
- A Non‐Exploding Alkali Metal Drop on Water: From Blue Solvated Electrons to Bursting Molten Hydroxide, Angewandte Chemie, Volume 128 (2016) no. 42, p. 13213 | DOI:10.1002/ange.201605986
- A Non‐Exploding Alkali Metal Drop on Water: From Blue Solvated Electrons to Bursting Molten Hydroxide, Angewandte Chemie International Edition, Volume 55 (2016) no. 42, p. 13019 | DOI:10.1002/anie.201605986
- Fission of multiply charged alkali clusters in helium droplets – approaching the Rayleigh limit, Physical Chemistry Chemical Physics, Volume 18 (2016) no. 15, p. 10623 | DOI:10.1039/c6cp00764c
- Coulomb explosion during the early stages of the reaction of alkali metals with water, Nature Chemistry, Volume 7 (2015) no. 3, p. 250 | DOI:10.1038/nchem.2161
- Cu+NO scattering quantum dynamics, International Journal of Mass Spectrometry, Volume 365-366 (2014), p. 121 | DOI:10.1016/j.ijms.2014.01.024
- Doubly charged CO2 clusters formed by ionization of doped helium nanodroplets, International Journal of Mass Spectrometry, Volume 365-366 (2014), p. 200 | DOI:10.1016/j.ijms.2014.01.016
- Interactions between Carbon Nanoparticles in a Droplet of Organic Solvent, The Journal of Physical Chemistry C, Volume 118 (2014) no. 29, p. 16074 | DOI:10.1021/jp4120018
- Electron interactions with positively and negatively multiply charged biomolecular clusters, Journal of Physics: Conference Series, Volume 373 (2012), p. 012009 | DOI:10.1088/1742-6596/373/1/012009
- Fragmentation of the tryptophan cluster [Trp9–2H]2− induced by different activation methods, Rapid Communications in Mass Spectrometry, Volume 24 (2010) no. 22, p. 3255 | DOI:10.1002/rcm.4763
- Structure and electronic properties of PbnM (M=C, Al, In, Mg, Sr, Ba, and Pb; n=8, 10, 12, and 14) clusters: Theoretical investigations based on first principles calculations, The Journal of Chemical Physics, Volume 128 (2008) no. 2 | DOI:10.1063/1.2814166
- Coincidence studies of the bond-forming reactivity and reaction dynamics of molecular dications, International Journal of Mass Spectrometry, Volume 260 (2007) no. 1, p. 1 | DOI:10.1016/j.ijms.2006.06.018
- Multiply Charged Neon Clusters: Failure of the Liquid Drop Model?, Physical Review Letters, Volume 98 (2007) no. 2 | DOI:10.1103/physrevlett.98.023401
- Atomic and electronic structures of neutral and charged Pbn clusters (n=2–15): Theoretical investigation based on density functional theory, The Journal of Chemical Physics, Volume 126 (2007) no. 24 | DOI:10.1063/1.2741537
- Metastable C3H52+ produced by electron impact of propane, Vacuum, Volume 81 (2007) no. 10, p. 1129 | DOI:10.1016/j.vacuum.2007.01.002
- Domain growth as manifestation of a Coulomb instability of bound charge, Journal of Applied Physics, Volume 100 (2006) no. 5 | DOI:10.1063/1.2336490
- Photo-ionization induced rapid grain growth in novae, Astronomy Astrophysics, Volume 417 (2004) no. 2, p. 695 | DOI:10.1051/0004-6361:20034243
- Kinetic-energy release in Coulomb explosion of metastable C3H52+, The Journal of Chemical Physics, Volume 118 (2003) no. 7, p. 3090 | DOI:10.1063/1.1536978
Cité par 29 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier