[Sur la production des éléments super lourd]
Depuis la découverte de noyaux super lourds déformés (1983–85) un « pont » relie l'ı̂lot des noyaux super lourds (SHE) aux isotopes connus des éléments plus légers. Ce que nous savons, tant d'un point de vue expérimental que théorique, de la structure des SHE est présenté dans la première section. La synthèse de nouveaux éléments, l'analyse des sections efficaces de production ainsi que la limitation macroscopique de ces études à l'élément Z=112+ε fait l'objet de la deuxième section. L'annulation des sections efficaces de fusion d'éléments chargés d'une dizaine de protons supplémentaire est introduite comme une conséquence générale de la répulsion Coulombienne ( « Coulomb Falls »). La manière dont la structure des partenaires de la collision modifie cette limite Coulombienne est présentée dans la Section 3. Les réactions induites par des noyaux déformés conduisent à des noyaux plus excités (décroisant en émettant plus de neutrons (Canaux à 4n et 5n)) alors que celles mettant en jeu des noyaux avec des sous structure en agrégats et les noyaux à couches fermés, 208126Pb et 13882Ba conservent des excitations faibles (Canaux à 1n et 2n)). Le début de l'annulation de production de SHE par la fusion de noyaux déformés est abaissée à une plus petite fissilité x=0.68⩽0.72, alors que pour des noyaux sphériques elle se retrouve accrue x=0.76⩾0.72 pour le 138Ba et x=0.79⩾0.72 pour le 208Pb. Un point sur les travaux qu'il reste à mener termine cette revue.
Since the discovery of Deformed Superheavy Nuclei (1983–85) a bridge connects the island of SHE to known isotopes of lighter elements. What we know experimentally and theoretically on the nuclear structure of SHE is reported in a first section. The making of the elements, with an analysis of production cross sections, and the macroscopic limitation to Z=112+ε is presented in a second section. The break-down of fusion cross sections in the ‘Coulomb Falls’ within a range of about 10 elements is introduced as the universal limiting phenomenon. How the nuclear structure of the collision partners modifies the on-set of this limitation is presented in Section 3. Reactions induced by deformed nuclei are pushed by side collisions to higher excitation energies (4n- and 5n-channels), whereas reactions driven by the cluster-like, closed-shell nuclei, 208126Pb and 13882Ba, are kept at low excitation energies (1n- and 2n-channels). The on-set of production limitation for deformed collision partners is moved to smaller effective fissilities x=0.68⩽0.72, whereas for spherical clusters the on-set is delayed x=0.76⩾0.72 and x=0.79⩾0.72 for 138Ba and 208Pb, respectively. An outlook, what remains to be studied in the future, ends the article.
@article{CRPHYS_2003__4_4-5_571_0, author = {Peter Armbruster}, title = {On the production of superheavy elements}, journal = {Comptes Rendus. Physique}, pages = {571--594}, publisher = {Elsevier}, volume = {4}, number = {4-5}, year = {2003}, doi = {10.1016/S1631-0705(03)00061-6}, language = {en}, }
Peter Armbruster. On the production of superheavy elements. Comptes Rendus. Physique, Volume 4 (2003) no. 4-5, pp. 571-594. doi : 10.1016/S1631-0705(03)00061-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00061-6/
[1] Annu. Rev. Nucl. Part. Sci., 35 (1985), p. 135
[2] Nucl. Phys. A, 239 (1975), p. 353
[3] et al. Z. Phys. A, 354 (1996), p. 229
[4] et al. Z. Phys. A, 300 (1981), p. 107
[5] et al. Z. Phys. A, 309 (1982), p. 89
[6] Z. Phys. A, 317 (1984), p. 235
[7] et al. Phys. Rev. Lett., 33 (1974), p. 1490
[8] Ark. Fys., 36 (1967), p. 593
[9] Phys. Lett., 22 (1966), p. 500
[10] Nobel Symposium 27 Physics, Phys. Scripta A, Volume 10 (1974), pp. 47-52
[11] et al. Nucl. Phys. A, 410 (1983), p. 254
[12] Z. Phys. A, 315 (1984), p. 197
[13] et al. Z. Phys. A, 315 (1984), p. 145
[14] “Enrico Fermi” School, Varenna 1984, Course 91, North-Holland, Amsterdam, 1986 (p. 222)
[15] et al. Z. Phys. A, 350 (1995), p. 277
[16] et al. Z. Phys. A, 350 (1995), p. 281
[17] et al. Proc. Int. Conf. AMCO 7, TH-Darmstadt (O. Klepper, ed.), 1984, p. 466
[18] Z. Phys. A, 325 (1986), p. 479
[19] Phys. Lett. B, 186 (1987), p. 6
[20] et al. Proc. Int. Conf. Phys. Chem. Fission, Jülich, 1979, Vol. 1, IAEA, Vienna, 1980, p. 409
[21] et al. Soviet Phys. JETP, 15 (1962), p. 1016
[22] et al. Z. Phys. A, 321 (1985), p. 317
[23] et al. Z. Phys. A, 322 (1985), p. 277
[24] et al. Z. Phys. A, 324 (1986), p. 489
[25] At. Data Nucl. Data Tables, 26 (1981), p. 165
[26] Phys. Rev., 100 (1955), p. 937
[27] et al. Proc. Int. Conf. AMCO 7, TH-Darmstadt (O. Klepper, ed.), 1984, p. 284
[28] Nucl. Phys. A, 491 (1989), p. 267
[29] Proc. Int. Conf. Phys. Chem. Fission, Rochester, 1973, Vol. 1, IAEA, Vienna, 1974, p. 103
[30] Phys. Rev. C, 52 (1995), p. 1871
[31] Phys. Rev. C, 56 (1997), p. 812
[32] AMCO-6 (J.A. Nolen; W. Benenson, eds.), Plenum, New York, 1980, p. 119
[33] Nucl. Phys. A, 399 (1983), p. 11
[34] Nucl. Phys., 9 (1959), p. 635
[35] Phys. Lett. B, 32 (1970), p. 149
[36] Phys. Lett. B, 33 (1970), p. 381
[37] Annu. Rev. Nucl. Part. Sci., 28 (1978), p. 523
[38] Z. Phys. A, 297 (1980), p. 61
[39] Phys. Rev. C, 21 (1980), p. 1568
[40] Phys. Rev., 103 (1956), p. 469
[41] Rep. Prog. Phys., 52 (1989), p. 439
[42] et al. Nucl. Phys. A, 611 (1996), p. 211
[43] et al. Phys. Rev. C, 56 (1997), p. 238
[44] et al. Phys. Rev. C, 60 (1999), p. 034304
[45] Prog. Part. Nucl. Phys., 37 (1996), p. 193
[46] Phys. Lett. B, 451 (1999), p. 275
[47] et al. Phys. Lett. B, 515 (2001), p. 42
[48] P. Bonche, private communication, July 2002
[49] et al. Nature, 418 (2002), p. 859
[50] Rev. Mod. Phys., 72 (2000), p. 733
[51] Ann. Rev. Nucl. Part. Sci., 50 (2000), p. 411
[52] et al. NIM B, 126 (1997), p. 329
[53] et al. Z. Phys. A, 345 (1993), p. 389
[54] et al. Nucl. Phys. A, 502 (1989), p. C561
[55] Rep. Progr. Phys., 54 (1991), p. 949
[56] et al. Nucl. Phys. A, 452 (1986), p. 173
[57] et al. Nucl. Phys. A, 44 (1985), p. 316
[58] et al. Z. Phys. A, 346 (1993), p. 119
[59] et al. Z. Phys. A, 341 (1991), p. 75
[60] , Lecture Notes in Phys., 117, Springer-Verlag, Heidelberg, 1980 (p. 281)
[61] Z. Phys. A, 300 (1981), p. 227
[62] et al. Z. Phys. A, 318 (1984), p. 157
[63] JAERI-Rev. 2001-030 (2001), p. 37
[64] et al. Phys. Rev. C, 62 (2000), p. 014602
[65] Eur. Phys. J. A, 15 (2002), p. 375
[66] Nucl. Phys. A, 459 (1986), p. 145
[67] Nucl. Phys. A, 231 (1974), p. 141
[68] Phys. Scripta, 24 (1981), p. 113
[69] Nucl. Phys. A, 440 (1985), p. 327
[70] et al. Phys. Rev. C, 36 (1987), p. 115
[71] et al. Z. Phys. A, 342 (1992), p. 411
[72] et al. Phys. Rev. Lett., 75 (1995), p. 1903
[73] S. Hofmann, F.P. Hessberger, private communication, 2001
[74] Z. Phys. A, 343 (1992), p. 47
[75] Proc. Int. Conf. Phys. Chem. Fission, Rochester, Vol. 1, IAEA, Vienna, 1974, p. 367
[76] et al. Nucl. Phys. A, 629 (1998), p. 635
[77] et al. Soviet J. Nucl. Phys., 21 (1975), p. 612
[78] et al. Nucl. Phys. A, 713 (2003), p. 3
[79] P. Cagarda et al., GSI Scientific Rep. 2001, GSI 2002-1, 2002, ISSN 0174-0814, p. 15
[80] et al. Phys. Rev. C, 53 (1996), p. 1290
[81] et al. Phys. Rev. C, 65 (2002), p. 054608
[82] Ch. Stodel, Etude expérimentale de l'influence de la structure des partenaires dans la fusion de systèmes presque symétriques, Thesis, Univ. Caen, 1998
[83] et al. Nucl. Phys. A, 596 (1996), p. 329
[84] Rep. Progr. Phys., 62 (1999), p. 465
[85] Yu. Oganessian et al., Ann. Rep. 1995/96 JINR-FLNR Dubna (1997) p. 62
[86] et al. Phys. Rev. C, 65 (2002), p. 054602
[87] “Enrico Fermi” School, Varenna 1987, Course 103, North-Holland, Amsterdam, 1989 (p. 282)
[88] et al. Z. Phys. A, 359 (1997), p. 251
[89] Eur. Phys. J. A, 7 (2000), p. 23
[90] et al. Phys. Rev. Lett., 83 (1999), p. 3154
[91] et al. Nature, 400 (1999), p. 242
[92] et al. Phys. Rev. C, 62 (2000), p. 041604 (R)
[93] et al. Phys. Rev. C, 63 (2001), p. 011301 (R)
[94] Naturwiss., 27 (1939), p. 11
[95] et al. Z. Naturforsch., 41 (1986), p. 1341
[96] Nucl. Phys., 58 (1964), p. 177
[97] et al. Phys. Rev. C, 21 (1980), p. 972
[98] et al. Phys. Rev. Lett., 48 (1982), p. 852
[99] et al. Phys. Rev. Lett., 82 (1999), p. 809
[100] et al. Eur. Phys. J. A, 6 (1999), p. 63
[101] Phys. Rev. C, 60 (1999), p. 041302
- Measurement of fusion evaporation residue cross sections in the Ti48+Ba138 reaction, Physical Review C, Volume 100 (2019) no. 4 | DOI:10.1103/physrevc.100.044611
- Nuclear structure features of very heavy and superheavy nuclei—tracing quantum mechanics towards the ‘island of stability’, Physica Scripta, Volume 92 (2017) no. 8, p. 083002 | DOI:10.1088/1402-4896/aa7921
- Binary fragmentation based studies for the near super-heavy compound nucleus 256Rf, The European Physical Journal A, Volume 53 (2017) no. 6 | DOI:10.1140/epja/i2017-12323-5
- Predictions on the alpha decay half lives of superheavy nuclei with Z= 113 in the range 255 ≤A≤ 314, Nuclear Physics A, Volume 951 (2016), p. 116 | DOI:10.1016/j.nuclphysa.2016.03.041
- Statistical model calculations of pre-scission neutron multiplicity for the heavy ion induced fusion-fission reactions with actinide target232Th, EPJ Web of Conferences, Volume 86 (2015), p. 00060 | DOI:10.1051/epjconf/20158600060
- Deduction of compound nucleus formation probability from the fragment angular distributions in heavy-ion reactions, Physical Review C, Volume 92 (2015) no. 1 | DOI:10.1103/physrevc.92.014611
- Evidence of quasifission in asymmetric reactions forming the250Cf compound system, Physical Review C, Volume 86 (2012) no. 3 | DOI:10.1103/physrevc.86.034606
- MY JOURNEY TO THE SUPERHEAVY ISLAND WITH SZYMANSKI, NILSSON, NIX, AND SWIATECKI FROM LYSEKIL TO THE PRESENT, International Journal of Modern Physics E, Volume 19 (2010) no. 04, p. 575 | DOI:10.1142/s0218301310014996
- Strong evidence for quasifission in asymmetric reactions formingPo202, Physical Review C, Volume 77 (2008) no. 2 | DOI:10.1103/physrevc.77.024606
- Fission fragment anisotropies for theC13+U235system at near-Coulomb barrier energies, Physical Review C, Volume 77 (2008) no. 2 | DOI:10.1103/physrevc.77.021601
- Entrance channel dependence of quasifission in reactions formingTh220, Physical Review C, Volume 77 (2008) no. 3 | DOI:10.1103/physrevc.77.034610
- Microscopic description of superheavy nuclei, Annals of Physics, Volume 320 (2005) no. 2, p. 429 | DOI:10.1016/j.aop.2005.05.009
Cité par 12 documents. Sources : Crossref
Commentaires - Politique