[Nucléation et croissance confinée de nanocristaux organiques en matrices sol–gel : un nouveau type de matériaux organo-minéraux pour l'optique]
Nous avons développé une élaboration simple et générique de nouveaux matériaux hybrides organo-minéraux constitués de nanocristaux organiques inclus dans des matrices sol–gel. Ce procédé est basé sur le contrôle de la nucléation et de la croissance confinée de phases organiques dans les pores de gels denses. Pour les xérogels massifs, nous avons obtenu des distributions de taille de nanocristaux étroites (10–20 nm). Nous avons étendu cette méthode à l'élaboration de couches minces par spin-coating. Dans tous ces matériaux nanocomposites, nous avons stabilisé les phases organiques cristallisées et obtenus des propriétés optiques linéaires et non-linéaires prometteuses.
We have engineered new hybrid organic–inorganic materials through a simple and generic preparation of stable organic nanocrystals grown in gel–glass matrices. This process is based on the confined nucleation and growth of dyes in the pores of dense gels. For bulk samples, narrow size distributions of particles are obtained between 10 and 20 nm in diameter. We have extended this method to the preparation of organic nanocrystals embedded in sol–gel thin films by spin-coating. For all these nanocomposite samples, we have significantly increased the stability of the dye and obtained promising linear and nonlinear optical properties.
Publié le :
Mots-clés : nucléation et croissance confinées, matériaux hybrides organo-minéraux, nanocristaux organiques, sol–gel, optique
Julien Zaccaro 1 ; Nathalie Sanz 1 ; Estelle Botzung Appert 1 ; Patrice L. Baldeck 2 ; Alain Ibanez 1
@article{CRPHYS_2002__3_4_463_0, author = {Julien Zaccaro and Nathalie Sanz and Estelle~Botzung Appert and Patrice L. Baldeck and Alain Ibanez}, title = {Organic nanocrystals grown in sol{\textendash}gel matrices: a~new type of hybrid material for optics}, journal = {Comptes Rendus. Physique}, pages = {463--478}, publisher = {Elsevier}, volume = {3}, number = {4}, year = {2002}, doi = {10.1016/S1631-0705(02)01330-0}, language = {en}, }
TY - JOUR AU - Julien Zaccaro AU - Nathalie Sanz AU - Estelle Botzung Appert AU - Patrice L. Baldeck AU - Alain Ibanez TI - Organic nanocrystals grown in sol–gel matrices: a new type of hybrid material for optics JO - Comptes Rendus. Physique PY - 2002 SP - 463 EP - 478 VL - 3 IS - 4 PB - Elsevier DO - 10.1016/S1631-0705(02)01330-0 LA - en ID - CRPHYS_2002__3_4_463_0 ER -
%0 Journal Article %A Julien Zaccaro %A Nathalie Sanz %A Estelle Botzung Appert %A Patrice L. Baldeck %A Alain Ibanez %T Organic nanocrystals grown in sol–gel matrices: a new type of hybrid material for optics %J Comptes Rendus. Physique %D 2002 %P 463-478 %V 3 %N 4 %I Elsevier %R 10.1016/S1631-0705(02)01330-0 %G en %F CRPHYS_2002__3_4_463_0
Julien Zaccaro; Nathalie Sanz; Estelle Botzung Appert; Patrice L. Baldeck; Alain Ibanez. Organic nanocrystals grown in sol–gel matrices: a new type of hybrid material for optics. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 463-478. doi : 10.1016/S1631-0705(02)01330-0. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01330-0/
[1] (D.S. Chemla; J. Zyss, eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, 1 and 2, Academic, Orlando, 1987
[2] Molec. Engng., 1 (1991), pp. 141-152
[3] Adv. Mater., 5 (1993), pp. 120-124
[4] J. Mater. Chem., 4 (1994), pp. 1851-1854
[5] Nonlinear Opt., 9 (1995), pp. 113-126
[6] Chem. Mater., 8 (1996), pp. 68-75
[7] J. Solid State Chem., 129 (1997), pp. 22-29
[8] J. Cryst. Growth, 180 (1997), pp. 229-237
[9] J. Cryst. Growth, 204 (1999), pp. 325-332
[10] J. Opt. Soc. Am. B, 15 (1998), pp. 751-758
[11] J. Opt. Soc. Am. B, 16 (1999), pp. 1385-1391
[12] Optic. Mater., 12 (1999), pp. 351-356
[13] IEEE J. Quantum Electron., 35 (1999), pp. 66-71
[14] Adv. Mater., 10 (1998), pp. 1540-1543
[15] J. Mater. Chem., 10 (2000), pp. 2723-2726
[16] Synth. Met., 115 (2000), pp. 229-234
[17] Sol–Gel Science, The Physics and Chemistry of Sol–Gel Processing, Academic Press, New York, 1990
[18] J. Phys. Chem., 88 (1984), pp. 5957-5962
[19] J. Non-Cryst. Solids, 74 (1985), pp. 395-406
[20] New J. Chem., 18 (1994), pp. 1007-1047
[21] , Structure and Bonding, 85, Springer-Verlag, Berlin, 1996 (pp. 99–145)
[22] Phys. Rev. A, 40 (1989), pp. 5783-5801
[23] Phys. Rev. B, 42 (1990), pp. 1724-1730
[24] Adv. Mater., 5 (1993), pp. 758-760
[25] J. Opt. Spectr., 77 (1994), pp. 858-863
[26] Jpn. J. Appl. Phys., 38 (1999), p. L81-L83
[27] Appl. Phys. Lett., 77 (2000), pp. 2946-2948
[28] Bull. Soc. Française Minér. Crist., 87 (1964), pp. 604-613
[29] Crystal Growth in Gels (D.T.J. Hurle, ed.), Handbook of Crystal Growth, 2b, North-Holland, Amsterdam, 1994, pp. 1271-1303
[30] J. Am. Chem. Soc., 17 (1950), pp. 4847-4854
[31] J. Non-Cryst. Solids, 63 (1984), pp. 1-11
[32] J. Non-Cryst. Solids, 73 (1985), pp. 669-680
[33] N. Sanz, P. Terech, D. Djurado, A. Bourret, A. Ibanez, to be published
[34] Appl. Phys. Lett., 56 (1990), pp. 307-309
[35] Opt. Commun., 104 (1993) no. 1–3, pp. 102-106
[36] J. Nanopart. Res. (2002) (in press)
[37] Nonlinear Opt., 21 (1999), pp. 299-308
[38] J. Chem. Phys., 74 (1981), pp. 4800-4811
[39] J. Chem. Phys., 81 (1984) no. 9, pp. 4160-4167
[40] Ultramicrosc., 8 (1982) no. 4, pp. 409-416
[41] J. Mater. Res., 9 (1994) no. 5, pp. 1307-1313
[42] Phys. B, 270 (1999) no. 3–4, pp. 249-254
[43] J. Solid Stat. Chem., 165 (2002), pp. 25-34
[44] Solid State Sci., 3 (2001) no. 8, pp. 867-875
[45] Materials for Optical Limiting II (R. Sutherland; R. Pachter; P. Hood; D. Hagan; K. Lewis; J. Perry, eds.), MRS Proceedings, 479, 1998
[46] Science, 273 (1996), pp. 1533-1536
[47] Photon. Sci. News, 4 (1999), pp. 5-8
[48] , SPIE Proceedings, 3147, 1997, pp. 112-117
[49] J. Cryst. Growth, 52 (1981), pp. 524-529
[50] J. Cryst. Growth, 173 (1997), pp. 231-234
[51] Acta Cryst. D, 54 (1998), pp. 703-708
[52] J. Cryst. Growth, 173 (1997), pp. 592-596
[53] Adv. Func. Mater., 12 (2002) no. 5
[54] J. Opt. Soc. Am. B, 4 (1987) no. 6, pp. 997-1086
[55] Adv. Mater., 12 (2000), pp. 48-50
- Thermo- and photoswitchable spin-crossover nanoparticles of an iron(ii) complex trapped in transparent silica thin films, Dalton Transactions, Volume 39 (2010) no. 33, p. 7806 | DOI:10.1039/c0dt00321b
- TEM characterization of organic nanocrystals grown in sol–gel thin films, Journal of Nanoparticle Research, Volume 10 (2008) no. 1, p. 129 | DOI:10.1007/s11051-007-9228-4
- Organic nanocrystals grown in sol-gel matrices: new hybrid organic-inorganic materials for optics, Research on Chemical Intermediates, Volume 34 (2008) no. 2-3, p. 155 | DOI:10.1163/156856708783623492
- Confined nucleation and growth of organic nanocrystals in sol–gel matrices, J. Mater. Chem., Volume 16 (2006) no. 15, p. 1401 | DOI:10.1039/b509833p
- Fluorescence of molecular micro- and nanocrystals prepared with Bodipy derivatives, Journal of Photochemistry and Photobiology A: Chemistry, Volume 183 (2006) no. 3, p. 238 | DOI:10.1016/j.jphotochem.2006.07.002
- Spatial control of organic nanocrystal nucleation in sol–gel thin films for 3-D optical data storage devices or chemical multi-sensors, Journal of Crystal Growth, Volume 283 (2005) no. 3-4, p. 444 | DOI:10.1016/j.jcrysgro.2005.06.049
- Influence of Boron Concentration on the Surface Properties of TEOS-PDMS Hybrid Materials, Journal of Sol-Gel Science and Technology, Volume 36 (2005) no. 1, p. 113 | DOI:10.1007/s10971-005-2498-3
- LiIO3/SiO2 nanocomposite for quadratic non-linear optical applications, Journal of Non-Crystalline Solids, Volume 341 (2004) no. 1-3, p. 152 | DOI:10.1016/j.jnoncrysol.2004.05.002
- Second Harmonic Generation and Fluorescence of CMONS Dye Nanocrystals Grown in a Sol‐Gel Thin Film, ChemPhysChem, Volume 4 (2003) no. 7, p. 757 | DOI:10.1002/cphc.200300681
Cité par 9 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier