[Polarimétrie non-linéaire sur des cristaux moléculaires jusqu'à l'échelle nanométrique]
L'optique non-linéaire en milieux moléculaires est actuellement en phase de renouvellement au débouché de la possibilité nouvelle d'accéder aux échelles nanométriques grâce à une instrumentation nano-photonique de pointe et aux modèles associés. Nous nous proposons dans cet article de passer en revue et de discuter des développements en cours dans ce domaine dans notre laboratoire, en mettant particulièrement en exergue les propriétés tensorielles de dépendance en polarisations résolues à une échelle submicronique, aux fins d'une meilleure compréhension des architectures de nanostructures, de l'ordre et des propriétés dynamiques de cristallisation jusqu'à la résolution de la microscopie confocale à deux photons. L'intérêt de combiner les effets non-linéaires cohérents (i.e. génération de second harmonique) et incohérents (i.e. fluorescence à deux photons) tous deux résolus en polarisation apparaît dans la possibilité de déterminer l'orientation et la qualité cristalline de nano-cristaux (depuis des cristaux mono-moléculaires jusqu'à des cristaux binaires de type hôte-matrice). Le modèle de gaz orienté, interprété de la façon la plus générale en symétries multipolaires grâce au formalisme des tenseurs irréductibles, permet d'identifier des formes génériques de réponses angulaires en polarisation dont l'allure renseigne qualitativement et quantitativement sur les propriétés structurelles d'une large variété de nanomatériaux organiques et inorganiques.
Molecular nonlinear optics is currently experiencing a fruitful revival as a result of the unprecedented possibility to experimentally access the nanoscale through adequate nanophotonics instrumentation and modelling. It is the purpose of this article to survey and discuss some ongoing developments in this domain within our laboratory, with special emphasis on polarization dependent tensorial properties read-out at submicron scale, to be exploited towards a better understanding of nanostructured architectures, ordering as well as dynamical crystallization properties of a variety of samples, down to the spatial resolution of two-photon nonlinear confocal microscopy. The advantages of combining coherent (e.g. second harmonic generation) and incoherent (e.g. two photon induced fluorescence) phenomena, moreover with polarization resolution, will be shown to open-up a new and unique pathway onto the orientation as well as crystalline quality of different types of nanocrystals (from one component molecular to mixed guest–host binary crystals). The oriented gas model, expressed in its most general invariant form by way of irreducible multipolar decomposition permits to identify generic types of nonlinear polarization patterns which potentially provide both qualitative and quantitative insight onto the structural properties of a broad variety of molecular as well as inorganic nanomaterials.
Mot clés : Nanoparticule, Optique non-linéaire
Sophie Brasselet 1 ; Joseph Zyss 1
@article{CRPHYS_2007__8_2_165_0, author = {Sophie Brasselet and Joseph Zyss}, title = {Nonlinear polarimetry of molecular crystals down to the nanoscale}, journal = {Comptes Rendus. Physique}, pages = {165--179}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.07.015}, language = {en}, }
Sophie Brasselet; Joseph Zyss. Nonlinear polarimetry of molecular crystals down to the nanoscale. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 165-179. doi : 10.1016/j.crhy.2006.07.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.07.015/
[1] Excimer emission of anthracene, perylene, coronene and pyrene microcrystals dispersed in water, Chem. Phys. Lett., Volume 291 (1998), pp. 438-444
[2] J. Colloid. Interface Sci., 213 (1999), p. 270
[3] Fabrication of organic nanocrystals using microwave irradiation and their optical properties, Opt. Mater., Volume 21 (2002), pp. 591-594
[4] Nanoparticle formation of vanadyl phtalocyanine by laser ablation of its crystalline powder in a poor solvent, J. Phys. Chem. A, Volume 106 (2002), pp. 2135-2139
[5] Controlled nanocrystallization of organic molecules in sol–gel glasses, Adv. Mater., Volume 10 (1998), p. 1540
[6] Science, 263 (1994), p. 658
[7] Size effects of the optical properties of organic nanoparticles, J. Am. Chem. Soc., Volume 123 (2001), pp. 1434-1439
[8] Polyaromatic luminescent nanocrystals for chemical and biological sensors, Solid State Sci., Volume 16 (2004), pp. 1609-1611
[9] J-aggregated dye–MnPS3 hybrid nano-particles with giant quadratic optical non-linearity, Adv. Mater., Volume 17 (2005) no. 3, p. 335
[10] Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering, J. Phys. Chem. B, Volume 109 (2005), p. 5383
[11] Thin Solid Films, 327 (1998), p. 241
[12] Local orientational distribution of molecular monolayers probed by nonlinear microscopy, Chem. Phys. Lett., Volume 411 (2005) no. 1–3, pp. 98-102
[13] Local second harmonic generation enhancement on gold nanostructures probed by 2-photon microscopy, Opt. Lett., Volume 83 (2003), pp. 2681-2692
[14] In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy, Phys. Rev. Lett., Volume 92 (2004) no. 20, p. 207401
[15] N. Tancrez, S. Brasselet, I. Ledoux, J. Zyss, Nonlinear optical properties of J-aggregated dye–MnPS3 hybrid nano-particles, submitted for publication
[16] Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy, Opt. Lett., Volume 25 (2000), pp. 320-322
[17] Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy, J. Phys. Chem. B, Volume 107 (2003), pp. 12403-12410
[18] Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials, J. Chem. Phys., Volume 1 (1991), p. 3
[19] Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media, J. Opt. Soc. Am. B, Volume 15 (1998) no. 1, p. 257
[20] Octupolar versus dipolar crystalline structures in nonlinear optics. A dual crystal and propagative engineering approach, J. Chem. Phys., Volume 109 (1998) no. 2, p. 658
[21] High efficiency and quadratic nonlinear optical properties of a fully optimized 2-D octupolar crystal by nonlinear microscopy, Adv. Mater., Volume 17 (2005) no. 2, pp. 196-200
[22] Opt. Commun., 79 (1990), p. 102
[23] Coherent control of the optical nonlinear and luminescence anisotropies of molecular thin films by multiphoton excitations, Opt. Lett., Volume 29 (2004) no. 11, pp. 1242-1244
[24] Proc. Royal Soc. A, 273 (1963), p. 275
[25] Group Theory, Academic Press, New York, 1959
[26] Origin of the second-order optical susceptibilities of crystalline substituted benzene, Phys. Rev. B, Volume 12 (1975) no. 10, pp. 4534-4546
[27] Relationship between microscopic and macroscopic lowest order optical nonlinearities of molecular crystals with one- and two-dimensional units, Phys. Rev. A, Volume 26 (1982), pp. 2028-2048
[28] Simultaneous second-harmonic generation and two-photon excited fluorescence microscopy, Nonlin. Opt., Volume 25 (2000), pp. 183-188
[29] V. Le Floc'h, PhD thesis, ENS Cachan, France, 2003
[30] Magnitude of the nonlinear-optical coefficients of KTiOPO4, Opt. Lett., Volume 17 (1992), p. 982
[31] H. Nakanishi, H. Matsuda, S. Okada, M. Kato, in: Proceedings of the MRS International Meeting on Advanced Materials, vol. 1, 1989, 143
[32] Colloids and Surfaces A: Physicochem. Eng. Aspects, 169 (2000), p. 251
[33] Chem. Mater., 1 (1989), p. 114
[34] Adv. Mater., 9 (1997), p. 677
[35] J. Phys. Chem. B, 102 (1998), p. 4277
[36] Chem. Mater., 11 (2000), p. 3296
[37] Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds, Chem. Phys., Volume 318 (2005) no. 1–2, pp. 12-20
[38] J. Am. Chem. Soc., 120 (1998), p. 2563
[39] J. Am. Chem. Soc., 123 (2001), p. 6421
[40] Coupling octupoles in crystals: the case of the 1,3,5-trinitrobenzene-triphenylene1:1 molecular co-crystal, Chem. Mater., Volume 15 (2003), pp. 3063-3073
[41] Preparation evaluation of the conformational polymorphs of α-[(4-Methoxyphenyl)methylene]-4-nitrobenzeneacetonitrile, Crystal Growth Design, Volume 2 (2002), p. 609
[42] K. Komorowska, L. Pourlsen, M. Jazdzyk, S. Brasselet, SHG microscopy investigation of PHTP inclusion compounds based nanoparticles, in preparation
[43] Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett., Volume 85 (2000), pp. 4482-4485
[44] Three-dimensional orientation of single molecules observed by far- and near-field fluorescence microscopy, J. Chem. Phys., Volume 118 (2003) no. 12, pp. 5279-5282
[45] Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B, Volume 20 (2003) no. 3, pp. 554-559
[46] J. Appl. Phys., 39 (1968), pp. 3798-3813
Cité par Sources :
Commentaires - Politique