[Prolifération et recyclage du plutonium]
Plutonium recycling offers benefits in an energy perspective of sustainable development, and, moreover it contributes to non-proliferation. Prior to recycling, reactor-grade plutonium from light-water reactors does not lend itself easily to the assembly of explosive nuclear devices; thereafter, practically not at all. Control systems for material security and non-proliferation should identify and adopt several categories of plutonium covering various isotopic mixtures associated with different fuel types, in order to better reflect the risks and to better focus their controls. The author proposes the adoption of three categories of plutonium.
Le recyclage du plutonium ouvre des perspectives prometteuses compatibles avec un développement énergétique durable, et il peut de plus contribuer à la non-prolifération. Avant recyclage, le plutonium de la filière des réacteurs à eau légère se prête mal à la fabrication d'engins explosifs nucléaires ; après, quasiment plus. Les organismes de contrôles des matières nucléaires devraient identifier et adopter plusieurs catégories de plutonium tenant compte des différentes compositions isotopiques, afin de mieux refléter les vrais risques et mieux cibler leurs inspections. L'auteur propose l'adoption de trois catégories de plutonium.
Accepté le :
Publié le :
Mots-clés : prolifération, sécurité, plutonium, recyclage, MOX, engin explosif, réacteur nucléaire
Bruno Pellaud 1
@article{CRPHYS_2002__3_7-8_1067_0, author = {Bruno Pellaud}, title = {Proliferation aspects of plutonium recycling}, journal = {Comptes Rendus. Physique}, pages = {1067--1079}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01364-6}, language = {en}, }
Bruno Pellaud. Proliferation aspects of plutonium recycling. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 1067-1079. doi : 10.1016/S1631-0705(02)01364-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01364-6/
[1] D.A. Rossin, Secrecy and misguided policy, Center for International Security and Cooperation, Stanford, Paper presented at the Global 2001 Conference, Paris, 2001
[2] G.W. Bush, National energy policy, 2001
[3] Committee on International Security and Arms Control, National Academy of Sciences, Interim Report for the U.S. Department of Energy by the Panel to Review the Spent-Fuel Standard for Disposition of Excess Weapons Plutonium, 1999
[4] A. DeVolpi, Forum on Physics & Society of the American Physical Society, January 2002
[5] R. Dautray, L'énergie nucléaire civile dans le cadre temporal des changements climatiques (Nuclear energy in the context of climatic transitions), Report to the French Academy of Sciences, Editions Tec&Doc, 2001
[6] Plutonium and Highly Enriched Uranium 1996, SIPRI and Oxford University Press, 1997
[7] J.C. Mark, Reactor-grade plutonium's explosive properties, Consultant, Nuclear Control Institute, 1990
[8] Private communication, 1995
[9] Explosive properties of reactor-grade plutonium, Science and Global Security, Volume 4 (1993), pp. 111-128
[10] Siemens AG, Buildup of Pu isotopes in a U fuel assembly with 4% initial enrichment, Private communication
[11] Private communication, 1994
[12] J. Swahn, The long-term nuclear explosive predicament…, Technical Peace Research Group, Institute of Physical Resource Theory, Gothenburg, 1992, pp. 59-65
[13] N. Gylden, L. Holm, Risks of nuclear explosives production in secret, Swedish National Defence Research Institute, 1974
[14] Proliferation, Plutonium and Policy: Institutional and Technological Impediments to Nuclear Weapons Propagation, Pergamon Press, 1979
[15] A. DeVolpi, Demilitarization of plutonium, Arms Control and Nonproliferation Program, Argonne National Laboratory, Proc. Inst. Nuclear Mat. Management, 1994
[16] Quote from the “Secrecy & Government Bulletin”, Federation of American Scientists 57 (1996)
[17] Plutonium isotopics – Non-proliferation and safeguards issues, Symposium on International Safeguards, IAEA, Vienna, 1997
[18] Report of the Canberra Commission, Government of Australia, Department of Foreign affairs and Trade, 1996
- Development of a start-up core for sustaining rotational fuel shuffling strategy for a nitride fueled lead-cooled fast reactor, Annals of Nuclear Energy, Volume 218 (2025), p. 111379 | DOI:10.1016/j.anucene.2025.111379
- Practical Design of a Breed-and-Burn Lead-Cooled Fast Reactor with Rotational Fuel Shuffling Strategy, Nuclear Science and Engineering, Volume 199 (2025) no. 2, p. 266 | DOI:10.1080/00295639.2024.2347716
- Increased 238 Pu Production in Proliferation-Resistant U-10Zr Fuel Produced from Reprocessed Uranium Containing Unseparated 237 Np, Nuclear Technology, Volume 211 (2025) no. 8, p. 1645 | DOI:10.1080/00295450.2024.2425914
- Concept of Lead-Bismuth Eutectic cooled Rotational Fuel-shuffling Breed-and-Burn Fast Reactor Using Metallic Fuel, Progress in Nuclear Energy, Volume 187 (2025), p. 105834 | DOI:10.1016/j.pnucene.2025.105834
- Evaluated Material Attractiveness of Plutonium Composition from Economic Simplified Boiling Water Reactor (ESBWR), Journal of Physics: Conference Series, Volume 2734 (2024) no. 1, p. 012058 | DOI:10.1088/1742-6596/2734/1/012058
- Material attractiveness of irradiated fuel salts from the Seaborg Compact Molten Salt Reactor, Nuclear Engineering and Technology, Volume 56 (2024) no. 9, p. 3969 | DOI:10.1016/j.net.2024.04.045
- Neutrino-detector design for safeguarding small modular reactors, Physical Review Applied, Volume 21 (2024) no. 6 | DOI:10.1103/physrevapplied.21.064061
- Neutronic performance evaluation of Plutonium Recycling in two core sizes for a 250 MWt Molten salt reactor, Nuclear Engineering and Design, Volume 415 (2023), p. 112733 | DOI:10.1016/j.nucengdes.2023.112733
- Disposal, Destruction and Disarmament: Comparative Analysis of US Chemical Weapon and Weapons Plutonium Stockpile Reductions, Central European Journal of International and Security Studies, Volume 17 (2022) no. 1, p. 36 | DOI:10.51870/sjmq9813
- Deciphering the Role of Symmetry and Ligand Field in Designing Three-Coordinate Uranium and Plutonium Single-Molecule Magnets, Inorganic Chemistry, Volume 61 (2022) no. 4, p. 1831 | DOI:10.1021/acs.inorgchem.1c02646
- Evaluating the JEFF 3.1, ENDF/B-VII.0, JENDL 3.3, and JENDL 4.0 nuclear data libraries for a small 100 MWe molten salt reactor with plutonium fuel, Nuclear Science and Techniques, Volume 33 (2022) no. 12 | DOI:10.1007/s41365-022-01141-8
- Nuclear proliferation resistance assessment of fuel cycles closed with complete co-processing of spent fuel, Progress in Nuclear Energy, Volume 150 (2022), p. 104297 | DOI:10.1016/j.pnucene.2022.104297
- Nuclear non‐proliferation review and improving proliferation resistance assessment in the future, International Journal of Energy Research, Volume 45 (2021) no. 8, p. 11399 | DOI:10.1002/er.5486
- Open Source Analysis in Support to Non-proliferation: A Systems Thinking Perspective, Nuclear Non-proliferation and Arms Control Verification (2020), p. 309 | DOI:10.1007/978-3-030-29537-0_21
- Evaluation of Discharged Fuel in Preproposed Breed-and-Burn Reactors from Proliferation, Decay Heat, and Radiotoxicity Aspects, Nuclear Science and Engineering, Volume 194 (2020) no. 5, p. 405 | DOI:10.1080/00295639.2019.1706322
- Material attractiveness evaluation of inert matrix fuel for nuclear security and non-proliferation, Annals of Nuclear Energy, Volume 126 (2019), p. 427 | DOI:10.1016/j.anucene.2018.10.063
- First-principles study of plutonium adsorption on perfect and defective graphene and hexagonal boron nitride, Materials Research Express, Volume 5 (2018) no. 5, p. 055041 | DOI:10.1088/2053-1591/aac471
- Categorization methods of nuclear materials used in advanced nuclear fuel cycles for physical protection systems, Nuclear Engineering and Design, Volume 320 (2017), p. 374 | DOI:10.1016/j.nucengdes.2017.06.012
- Analysis on Proliferation Resistance Factor and Fuel Breeding Capability Based on Even Mass Plutonium Isotope Compositions, Energy Procedia, Volume 71 (2015), p. 182 | DOI:10.1016/j.egypro.2014.11.868
- Analysis on Even Mass Plutonium Production of Different Loading Materials in FBR Blanket, Advanced Materials Research, Volume 772 (2013), p. 507 | DOI:10.4028/www.scientific.net/amr.772.507
- Mechanical properties and XRD studies of silicon carbide inert matrix fuel fabricated by a low temperature polymer precursor route, Journal of Nuclear Materials, Volume 432 (2013) no. 1-3, p. 152 | DOI:10.1016/j.jnucmat.2012.07.010
- The effect of mixing methods and polymer infiltration and pyrolysis (PIP) cycles on the densification of silicon carbide inert matrix fuel through a polymer precursor route, Journal of Nuclear Materials, Volume 419 (2011) no. 1-3, p. 63 | DOI:10.1016/j.jnucmat.2011.07.020
- Comparison of Radionuclide’s Inventories and Activities With Slightly Enriched Uranium and Plutonium Fuel in CANDU Reactors, World Journal of Nuclear Science and Technology, Volume 01 (2011) no. 02, p. 31 | DOI:10.4236/wjnst.2011.12006
- Proliferation Resistance and Safeguards, Handbook of Nuclear Engineering (2010), p. 3421 | DOI:10.1007/978-0-387-98149-9_29
- Denaturing Generated Pu in Fast Breeder Reactor Blanket, Journal of Nuclear Science and Technology, Volume 47 (2010) no. 10, p. 853 | DOI:10.1080/18811248.2010.9720965
- Burn up extension with slightly enriched uranium and plutonium fuel in CANDU reactors, Nuclear Engineering and Design, Volume 240 (2010) no. 10, p. 2862 | DOI:10.1016/j.nucengdes.2010.05.068
- Protected Plutonium Breeding by Transmutation of Minor Actinides in Fast Breeder Reactor, Journal of Nuclear Science and Technology, Volume 45 (2008) no. 3, p. 230 | DOI:10.1080/18811248.2008.9711431
- Determination of plutonium in environmental samples with quadrupole ICP-MS, Journal of Radioanalytical and Nuclear Chemistry, Volume 275 (2008) no. 1, p. 55 | DOI:10.1007/s10967-006-7004-z
- Neptunium in the Fuel Cycle: Nonproliferation Benefits Versus Industrial Drawbacks, Nuclear Technology, Volume 164 (2008) no. 1, p. 13 | DOI:10.13182/nt08-a4004
Cité par 29 documents. Sources : Crossref
Commentaires - Politique