Comptes Rendus
Hydrodynamics and physics of soft objects/Hydrodynamique et physique des objets mous
Interaction of polyelectrolyte coated beads with phospholipid vesicles
[Interactions entre billes recouvertes de polyélectrolytes et vésicules phospholipidiques]
Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 259-264.

Des particules colloı̈dales recouvertes de multicouches de polyélectrolytes alternativement positives et negatives interacgissent fortement avec des vésicules lipidiques. Nous avons étudié deux cas : (i) interactions entre des billes et des vésicules unilamellaires de taille plus petite que celle des billes, où nous avons mis en évidence un recouvrement des billes par une ou plusieurs bicouches lipidiques, par le biais d'une augmentation du diamètre des billes et de changements de leur potentiel de surface ; (ii) interactions entre des billes et des vésicules géantes (plus grandes que les billes) où nous avons observé, par microscopie de fluorescence, l'étalement d'une vésicule sur une bille (cette dernière étant manipulée à l'aide d'une pince optique). Dans ce dernier cas, les fluctuations géantes de la vésicule sont supprimées à cause de l'adhésion sur la bille, et l'observation directe du recouvrement lors du processus d'étalement montre que la couverture lipidique de la bille n'est pas limitée seulement à la zone de contact bille/vésicule, s'étend à la bille entière.

Colloidal particles coated by polyelectrolyte multilayers of alternatingly positive and negative charge are shown to interact strongly with lipid vesicles. We have studied two cases: (i) the interaction between beads and small unilamellar vesicles (vesicles diameter smaller than the particles one), where we found evidence for coating of the beads with lipid bi- or multilayers in the form of an increase in bead diameter and changes in the beads surface potential; (ii) the interaction of beads with giant vesicles (vesicles larger than the particles), where we observed by fluorescence microscopy the spreading of the vesicle on the bead manipulated with an optical tweezer. Giant fluctuations of the vesicles are suppressed due to the adhesion of the vesicle to the bead and direct observation of the coating process shows that lipid coverage is not limited to the direct vesicle-bead contact area, but is rather extended to the entire bead.

Publié le :
DOI : 10.1016/S1631-0705(03)00030-6
Keywords: Adhesion, Membranes, Polyelectrolytes, Particles, Wetting
Mots-clés : Adhésion, Membranes, Polyélectrolytes, Particules, Mouillage

Andreas Fery 1 ; Sergio Moya 2 ; Pierre-Henri Puech 3 ; Françoise Brochard-Wyart 3 ; Helmuth Mohwald 1

1 Max Planck Institute für Kolloide und Grenzflächen Golm, Am Mühlenberg, 14476 Golm, Germany
2 Laboratoire de chimie des interactions moléculaires, Collège de France, 11, place Marcellin Bertellot, 75231 Paris cedex 05, France
3 Laboratoire physico-chimie Curie, UMR 168, institut Curie, 11, rue P. et M. Curie, 75005 Paris, France
@article{CRPHYS_2003__4_2_259_0,
     author = {Andreas Fery and Sergio Moya and Pierre-Henri Puech and Fran\c{c}oise Brochard-Wyart and Helmuth Mohwald},
     title = {Interaction of polyelectrolyte coated beads with phospholipid vesicles},
     journal = {Comptes Rendus. Physique},
     pages = {259--264},
     publisher = {Elsevier},
     volume = {4},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00030-6},
     language = {en},
}
TY  - JOUR
AU  - Andreas Fery
AU  - Sergio Moya
AU  - Pierre-Henri Puech
AU  - Françoise Brochard-Wyart
AU  - Helmuth Mohwald
TI  - Interaction of polyelectrolyte coated beads with phospholipid vesicles
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 259
EP  - 264
VL  - 4
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00030-6
LA  - en
ID  - CRPHYS_2003__4_2_259_0
ER  - 
%0 Journal Article
%A Andreas Fery
%A Sergio Moya
%A Pierre-Henri Puech
%A Françoise Brochard-Wyart
%A Helmuth Mohwald
%T Interaction of polyelectrolyte coated beads with phospholipid vesicles
%J Comptes Rendus. Physique
%D 2003
%P 259-264
%V 4
%N 2
%I Elsevier
%R 10.1016/S1631-0705(03)00030-6
%G en
%F CRPHYS_2003__4_2_259_0
Andreas Fery; Sergio Moya; Pierre-Henri Puech; Françoise Brochard-Wyart; Helmuth Mohwald. Interaction of polyelectrolyte coated beads with phospholipid vesicles. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 259-264. doi : 10.1016/S1631-0705(03)00030-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00030-6/

[1] G. Decher Science, 277 (1997), p. 1232

[2] E. Donath et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem., Volume 37 (1998) no. 16, pp. 2202-2205

[3] G.B. Sukhorukov et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles, Colloids & Surfaces A-Physicochemical & Engineering Aspects, Volume 137 (1–3) (1998), pp. 253-266

[4] F. Caruso Nanoengineering of particle surfaces [Review], Adv. Mater., Volume 13 (2001) no. 1, p. 11

[5] M. Kuhner; E. Sackmann Ultrathin hydrated dextran films grafted on glass – preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry, Langmuir, Volume 12 (1996) no. 20, pp. 4866-4876

[6] E. Sackmann Supported membranes – scientific and practical applications, Science, Volume 271 (1996) no. 5245, pp. 43-48

[7] J. Majewski et al. Structural studies of polymer-cushioned lipid bilayers, Biophys. J., Volume 75 (1998) no. 5, pp. 2363-2367

[8] J.Y. Wong et al. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry, Biophys. J., Volume 77 (1999) no. 3, pp. 1445-1457

[9] J.Y. Wong et al. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus, Biophys. J., Volume 77 (1999) no. 3, pp. 1458-1468

[10] E. Sackmann; M. Tanaka Supported membranes on soft polymer cushions: fabrication, characterization and applications [Review], Trends Biotechnol., Volume 18 (2000) no. 2, pp. 58-64

[11] W.W. Shen et al. Polymer-supported lipid bilayers on benzophenone-modified substrates, Biomacromolecules, Volume 2 (2001) no. 1, pp. 70-79

[12] E.K. Sinner; W. Knoll Functional tethered membranes [Review], Curr. Opin. Chem. Biol., Volume 5 (2001) no. 6, pp. 705-711

[13] C.A. Naumann et al. The polymer-supported phospholipid bilayer: Tethering as a new approach to substrate-membrane stabilization, Biomacromolecules, Volume 3 (2002) no. 1, pp. 27-35

[14] S. Moya et al. Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules, Macromolecules, Volume 33 (2000) no. 12, p. 4538

[15] K. Furusawa; W. Norde; J. Lyklema; Z.Z. Kolloid Polymer, 250 (1972), p. 908

[16] D.S. Dimitrov, M.I. Angelova, Electric field mediated lipid swelling and liposome formation, in: X-th Jena Symposium on Biophysical Chemistry: Bioelectrochemistry in Biotechnology, Erfurt, East Germany, September, 1986, 119 (1–3), pp. 61–65

[17] D.S. Dimitrov; M.I. Angelova Lipid swelling and liposome formation mediated by electric fields, Bioelectrochemistry & Bioenergetics, Volume 19(2) (1988), pp. 323-336

[18] M.I. Angelova et al. Progr. Colloid Polymer Sci., 89 (1992), pp. 127-131

[19] G. Oradd; G. Wikander; G. Lindblom; L.B.-A. Johansson F effect of glycerol on the translational and rotational motions in lipid bilayers studied by pulsed field gradient 1H NMR, EPR and time resolved fluorescence, JACS Faraday Transactions (1994), pp. 305-309

[20] O. Sandre, L. Moreaux, F. Brochard-Wyart, Dynamics of transient pores in stretched vesicles, in: Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (19), pp. 10591–10596

[21] H. Lichtenfeld et al. Colloidal stability investigations by single particle scattering photometer, Progr. Colloid Polymer Sci., Volume 104 (1997), p. 148

[22] A. Ott Derniers developpements et applications des pinces optiques, J. Physique IV, Volume 9 (1999), p. 109

[23] C. Dietrich; M. Angelova; B. Pouligny Adhesion of latex spheres to giant phospholipid vesicles: Statics and dynamics, J. Physique II, Volume 7 (1997), pp. 1651-1682

[24] M. Deserno; W.M. Gelbart Adhesion and wrapping in colloid-vesicle complexes, J. Phys. Chem. B, Volume 106 (2002), pp. 5543-5552

[25] E. Evans; D. Needham Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity and colloidal interactions, J. Phys. Chem., Volume 91 (1987), pp. 4219-4228

[26] K.H. Graf Substrat-Schicht-Wechselwirkung amphiphiler Monoschichten in der Langmuir Blodgett Benetzungskonfiguration – statische und dynamische Messungen mit einer neuartigen Kontaktmessmethode, Chemie und Pharmazie, Johannes Gutenberg University, Mainz, 1997

  • Clément Marque; Gaetano D'Avino; Domenico Larobina; Aude Michel; Ali Abou-Hassan; Antonio Stocco Diffusion of a single colloid on the surface of a giant vesicle and a droplet, Physical Review E, Volume 111 (2025) no. 2 | DOI:10.1103/physreve.111.025411
  • Soha Mohamed; Mohamed Nasr; Abeer Salama; Hanan Refai Novel lipid–polymer hybrid nanoparticles incorporated in thermosensitive in situ gel for intranasal delivery of terbutaline sulphate, Journal of Microencapsulation, Volume 37 (2020) no. 8, p. 577 | DOI:10.1080/02652048.2020.1826590
  • Timon Idema; Daniela J. Kraft Interactions between model inclusions on closed lipid bilayer membranes, Current Opinion in Colloid Interface Science, Volume 40 (2019), p. 58 | DOI:10.1016/j.cocis.2019.01.006
  • Matthew A. Dragovich; Nicole Fortoul; Anand Jagota; Wei Zhang; Krista Schutt; Yan Xu; Michelle Sanabria; Dennis M. Moyer; Sven Moller-Tank; Wendy Maury; X. Frank Zhang Biomechanical characterization of TIM protein–mediated Ebola virus–host cell adhesion, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-018-36449-2
  • Michael Raatz; Thomas R. Weikl Membrane Tubulation by Elongated and Patchy Nanoparticles, Advanced Materials Interfaces, Volume 4 (2017) no. 1 | DOI:10.1002/admi.201600325
  • Ningwei Li; Nima Sharifi-Mood; Fuquan Tu; Daeyeon Lee; Ravi Radhakrishnan; Tobias Baumgart; Kathleen J. Stebe Curvature-Driven Migration of Colloids on Tense Lipid Bilayers, Langmuir, Volume 33 (2017) no. 2, p. 600 | DOI:10.1021/acs.langmuir.6b03406
  • Juergen Pauluhn Kinetic modeling of the retention and fate of inhaled cerium oxide nanoparticles in rats: The cumulative displacement volume of agglomerates determines the outcome, Regulatory Toxicology and Pharmacology, Volume 86 (2017), p. 319 | DOI:10.1016/j.yrtph.2017.03.023
  • Amir Houshang Bahrami; Reinhard Lipowsky; Thomas R. Weikl The role of membrane curvature for the wrapping of nanoparticles, Soft Matter, Volume 12 (2016) no. 2, p. 581 | DOI:10.1039/c5sm01793a
  • Jaime Agudo-Canalejo; Reinhard Lipowsky Critical Particle Sizes for the Engulfment of Nanoparticles by Membranes and Vesicles with Bilayer Asymmetry, ACS Nano, Volume 9 (2015) no. 4, p. 3704 | DOI:10.1021/acsnano.5b01285
  • Noemi Jiménez-Rojo; Marta G. Lete; Elena Rojas; David Gil; Mikel Valle; Alicia Alonso; Sergio E. Moya; Félix M. Goñi Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles, Chemistry and Physics of Lipids, Volume 191 (2015), p. 84 | DOI:10.1016/j.chemphyslip.2015.08.012
  • Jaime Agudo-Canalejo; Reinhard Lipowsky Adhesive Nanoparticles as Local Probes of Membrane Curvature, Nano Letters, Volume 15 (2015) no. 10, p. 7168 | DOI:10.1021/acs.nanolett.5b03475
  • David Gonzalez-Rodriguez; Abdul I. Barakat; Efstathios Karathanasis Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells, PLOS ONE, Volume 10 (2015) no. 4, p. e0122097 | DOI:10.1371/journal.pone.0122097
  • Amir H. Bahrami; Michael Raatz; Jaime Agudo-Canalejo; Raphael Michel; Emily M. Curtis; Carol K. Hall; Michael Gradzielski; Reinhard Lipowsky; Thomas R. Weikl Wrapping of nanoparticles by membranes, Advances in Colloid and Interface Science, Volume 208 (2014), p. 214 | DOI:10.1016/j.cis.2014.02.012
  • Michael Raatz; Reinhard Lipowsky; Thomas R. Weikl Cooperative wrapping of nanoparticles by membrane tubes, Soft Matter, Volume 10 (2014) no. 20, p. 3570 | DOI:10.1039/c3sm52498a
  • Christoph Herold; Grzegorz Chwastek; Petra Schwille; Eugene P. Petrov Efficient Electroformation of Supergiant Unilamellar Vesicles Containing Cationic Lipids on ITO-Coated Electrodes, Langmuir, Volume 28 (2012) no. 13, p. 5518 | DOI:10.1021/la3005807
  • Olivier Le Bihan; Pierre Bonnafous; Laszlo Marak; Thomas Bickel; Sylvain Trépout; Stéphane Mornet; Felix De Haas; Hugues Talbot; Jean-Christophe Taveau; Olivier Lambert Cryo-electron tomography of nanoparticle transmigration into liposome, Journal of Structural Biology, Volume 168 (2009) no. 3, p. 419 | DOI:10.1016/j.jsb.2009.07.006
  • Ana Grenha; Carmen Remuñán-López; Edison L.S. Carvalho; Begoña Seijo Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins, European Journal of Pharmaceutics and Biopharmaceutics, Volume 69 (2008) no. 1, p. 83 | DOI:10.1016/j.ejpb.2007.10.017
  • Anne-Lise Troutier; Catherine Ladavière An overview of lipid membrane supported by colloidal particles, Advances in Colloid and Interface Science, Volume 133 (2007) no. 1, p. 1 | DOI:10.1016/j.cis.2007.02.003
  • Yolanda Diebold; Miguel Jarrín; Victoria Sáez; Edison L.S. Carvalho; María Orea; Margarita Calonge; Begoña Seijo; María J. Alonso Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP), Biomaterials, Volume 28 (2007) no. 8, p. 1553 | DOI:10.1016/j.biomaterials.2006.11.028
  • Guido Köhler; Sergio E. Moya; Stefano Leporatti; Christian Bitterlich; Edwin Donath Stability and fusion of lipid layers on polyelectrolyte multilayer supports studied by colloidal force spectroscopy, European Biophysics Journal, Volume 36 (2007) no. 4-5, p. 337 | DOI:10.1007/s00249-007-0135-5

Cité par 20 documents. Sources : Crossref

Commentaires - Politique