Colloidal particles coated by polyelectrolyte multilayers of alternatingly positive and negative charge are shown to interact strongly with lipid vesicles. We have studied two cases: (i) the interaction between beads and small unilamellar vesicles (vesicles diameter smaller than the particles one), where we found evidence for coating of the beads with lipid bi- or multilayers in the form of an increase in bead diameter and changes in the beads surface potential; (ii) the interaction of beads with giant vesicles (vesicles larger than the particles), where we observed by fluorescence microscopy the spreading of the vesicle on the bead manipulated with an optical tweezer. Giant fluctuations of the vesicles are suppressed due to the adhesion of the vesicle to the bead and direct observation of the coating process shows that lipid coverage is not limited to the direct vesicle-bead contact area, but is rather extended to the entire bead.
Des particules colloı̈dales recouvertes de multicouches de polyélectrolytes alternativement positives et negatives interacgissent fortement avec des vésicules lipidiques. Nous avons étudié deux cas : (i) interactions entre des billes et des vésicules unilamellaires de taille plus petite que celle des billes, où nous avons mis en évidence un recouvrement des billes par une ou plusieurs bicouches lipidiques, par le biais d'une augmentation du diamètre des billes et de changements de leur potentiel de surface ; (ii) interactions entre des billes et des vésicules géantes (plus grandes que les billes) où nous avons observé, par microscopie de fluorescence, l'étalement d'une vésicule sur une bille (cette dernière étant manipulée à l'aide d'une pince optique). Dans ce dernier cas, les fluctuations géantes de la vésicule sont supprimées à cause de l'adhésion sur la bille, et l'observation directe du recouvrement lors du processus d'étalement montre que la couverture lipidique de la bille n'est pas limitée seulement à la zone de contact bille/vésicule, s'étend à la bille entière.
Mot clés : Adhésion, Membranes, Polyélectrolytes, Particules, Mouillage
Andreas Fery 1; Sergio Moya 2; Pierre-Henri Puech 3; Françoise Brochard-Wyart 3; Helmuth Mohwald 1
@article{CRPHYS_2003__4_2_259_0, author = {Andreas Fery and Sergio Moya and Pierre-Henri Puech and Fran\c{c}oise Brochard-Wyart and Helmuth Mohwald}, title = {Interaction of polyelectrolyte coated beads with phospholipid vesicles}, journal = {Comptes Rendus. Physique}, pages = {259--264}, publisher = {Elsevier}, volume = {4}, number = {2}, year = {2003}, doi = {10.1016/S1631-0705(03)00030-6}, language = {en}, }
TY - JOUR AU - Andreas Fery AU - Sergio Moya AU - Pierre-Henri Puech AU - Françoise Brochard-Wyart AU - Helmuth Mohwald TI - Interaction of polyelectrolyte coated beads with phospholipid vesicles JO - Comptes Rendus. Physique PY - 2003 SP - 259 EP - 264 VL - 4 IS - 2 PB - Elsevier DO - 10.1016/S1631-0705(03)00030-6 LA - en ID - CRPHYS_2003__4_2_259_0 ER -
%0 Journal Article %A Andreas Fery %A Sergio Moya %A Pierre-Henri Puech %A Françoise Brochard-Wyart %A Helmuth Mohwald %T Interaction of polyelectrolyte coated beads with phospholipid vesicles %J Comptes Rendus. Physique %D 2003 %P 259-264 %V 4 %N 2 %I Elsevier %R 10.1016/S1631-0705(03)00030-6 %G en %F CRPHYS_2003__4_2_259_0
Andreas Fery; Sergio Moya; Pierre-Henri Puech; Françoise Brochard-Wyart; Helmuth Mohwald. Interaction of polyelectrolyte coated beads with phospholipid vesicles. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 259-264. doi : 10.1016/S1631-0705(03)00030-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00030-6/
[1] Science, 277 (1997), p. 1232
[2] et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem., Volume 37 (1998) no. 16, pp. 2202-2205
[3] et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles, Colloids & Surfaces A-Physicochemical & Engineering Aspects, Volume 137 (1–3) (1998), pp. 253-266
[4] Nanoengineering of particle surfaces [Review], Adv. Mater., Volume 13 (2001) no. 1, p. 11
[5] Ultrathin hydrated dextran films grafted on glass – preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry, Langmuir, Volume 12 (1996) no. 20, pp. 4866-4876
[6] Supported membranes – scientific and practical applications, Science, Volume 271 (1996) no. 5245, pp. 43-48
[7] et al. Structural studies of polymer-cushioned lipid bilayers, Biophys. J., Volume 75 (1998) no. 5, pp. 2363-2367
[8] et al. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry, Biophys. J., Volume 77 (1999) no. 3, pp. 1445-1457
[9] et al. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus, Biophys. J., Volume 77 (1999) no. 3, pp. 1458-1468
[10] Supported membranes on soft polymer cushions: fabrication, characterization and applications [Review], Trends Biotechnol., Volume 18 (2000) no. 2, pp. 58-64
[11] et al. Polymer-supported lipid bilayers on benzophenone-modified substrates, Biomacromolecules, Volume 2 (2001) no. 1, pp. 70-79
[12] Functional tethered membranes [Review], Curr. Opin. Chem. Biol., Volume 5 (2001) no. 6, pp. 705-711
[13] et al. The polymer-supported phospholipid bilayer: Tethering as a new approach to substrate-membrane stabilization, Biomacromolecules, Volume 3 (2002) no. 1, pp. 27-35
[14] et al. Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules, Macromolecules, Volume 33 (2000) no. 12, p. 4538
[15] Polymer, 250 (1972), p. 908
[16] D.S. Dimitrov, M.I. Angelova, Electric field mediated lipid swelling and liposome formation, in: X-th Jena Symposium on Biophysical Chemistry: Bioelectrochemistry in Biotechnology, Erfurt, East Germany, September, 1986, 119 (1–3), pp. 61–65
[17] Lipid swelling and liposome formation mediated by electric fields, Bioelectrochemistry & Bioenergetics, Volume 19(2) (1988), pp. 323-336
[18] et al. Progr. Colloid Polymer Sci., 89 (1992), pp. 127-131
[19] F effect of glycerol on the translational and rotational motions in lipid bilayers studied by pulsed field gradient 1H NMR, EPR and time resolved fluorescence, JACS Faraday Transactions (1994), pp. 305-309
[20] O. Sandre, L. Moreaux, F. Brochard-Wyart, Dynamics of transient pores in stretched vesicles, in: Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (19), pp. 10591–10596
[21] et al. Colloidal stability investigations by single particle scattering photometer, Progr. Colloid Polymer Sci., Volume 104 (1997), p. 148
[22] Derniers developpements et applications des pinces optiques, J. Physique IV, Volume 9 (1999), p. 109
[23] Adhesion of latex spheres to giant phospholipid vesicles: Statics and dynamics, J. Physique II, Volume 7 (1997), pp. 1651-1682
[24] Adhesion and wrapping in colloid-vesicle complexes, J. Phys. Chem. B, Volume 106 (2002), pp. 5543-5552
[25] Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity and colloidal interactions, J. Phys. Chem., Volume 91 (1987), pp. 4219-4228
[26] Substrat-Schicht-Wechselwirkung amphiphiler Monoschichten in der Langmuir Blodgett Benetzungskonfiguration – statische und dynamische Messungen mit einer neuartigen Kontaktmessmethode, Chemie und Pharmazie, Johannes Gutenberg University, Mainz, 1997
Cited by Sources:
Comments - Policy