[Pfaffiens, superpotentiels et modules des fibrés vectoriels]
Nous présentons une méthode pour calculer explicitement les superpotentiels non-perturbatifs associés aux modules d'un fibré vectoriel dans les cordes hétérotiques et la M-théorie. Cette méthode est applicable à n'importe quel fibré vectoriel stable et holomorphe d'une variété Calabi–Yau de dimension complexe trois elliptiquement fibrée. Les superpotentials des modules des fibrés vectoriels ont d'importantes implications potentielles pour les petits instantons de transitions de phase et la stabilité du vide et cosmologie des supercordes et M-théorie.
We present a method for explicitly computing the non-perturbative superpotentials associated with the vector bundle moduli in heterotic superstrings and M-theory. This method is applicable to any stable, holomorphic vector bundle over an elliptically fibered Calabi–Yau threefold. Superpotentials of vector bundle moduli potentially have important implications for small instanton phase transitions and the vacuum stability and cosmology of superstrings and M-theory.
@article{CRPHYS_2003__4_3_393_0, author = {Burt A. Ovrut}, title = {Pfaffians, superpotentials and vector bundle moduli}, journal = {Comptes Rendus. Physique}, pages = {393--404}, publisher = {Elsevier}, volume = {4}, number = {3}, year = {2003}, doi = {10.1016/S1631-0705(03)00037-9}, language = {en}, }
Burt A. Ovrut. Pfaffians, superpotentials and vector bundle moduli. Comptes Rendus. Physique, Volume 4 (2003) no. 3, pp. 393-404. doi : 10.1016/S1631-0705(03)00037-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00037-9/
[1] Non-perturbative effects on the string worldsheet, Nucl. Phys. B, Volume 278 (1986), p. 768
[2] Non-perturbative effects on the string worldsheet, 2, Nucl. Phys. B, Volume 289 (1987), p. 319
[3] Non-perturbative superpotentials in string theory, Nucl. Phys. B, Volume 474 (1996), pp. 343-360
[4] Fivebranes, membranes and non-perturbative string theory, Nucl. Phys. B, Volume 456 (1995), p. 130
[5] A non-perturbative superpotential with E8 symmetry, Mod. Phys. Lett. A, Volume 11 (1996), pp. 2199-2212
[6] World-sheet corrections via D-instantons, JHEP, Volume 0002 (2000), p. 030
[7] arXiv
|[8] Non-perturbative superpotentials from membrane instantons in heterotic M-theory, Nucl. Phys. B, Volume 614 (2001), pp. 117-170
[9] Five-brane superpotentials in heterotic M-theory, Nucl. Phys. B, Volume 626 (2002), pp. 113-164
[10] Vector bundle moduli and small instanton transitions | arXiv
[11] Superpotentials for vector bundle moduli | arXiv
[12] Vector bundle moduli superpotentials in heterotic superstrings and M-theory | arXiv
[13] G-fluxes and non-perturbative stabilisation of heterotic M-theory | arXiv
[14] Instabilities in heterotic M-theory induced by open membrane instantons, Nucl. Phys. B, Volume 607 (2001), pp. 117-154
[15] On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B, Volume 532 (1998), pp. 43-82
[16] Gaugino condensation in M-theory on S1/Z2, Phys. Rev. D, Volume 57 (1998), pp. 7529-7538
[17] The ten-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B, Volume 540 (1999), pp. 230-246
[18] Non-standard embedding and five-branes in heterotic M-theory, Phys. Rev. D, Volume 59 (1999), p. 106005
[19] Five-branes and supersymmetry breaking in M-theory, JHEP, Volume 9904 (1999), p. 009
[20] The universe as a domain wall, Phys. Rev. D, Volume 59 (1999), p. 086001
[21] Heterotic M-theory in five dimensions, Nucl. Phys. B, Volume 552 (1999), p. 246
[22] JHEP, 9905 (1999), p. 018
[23] JHEP, 9906 (1999), p. 034
[24] JHEP, 9911 (1999), p. 030
[25] arXiv
|[26] JHEP, 0108 (2001), p. 053
[29] JHEP, 0005 (2000), p. 045
[30] Phys. Rev. D, 60 (1999), p. 086001
[31] A. Lukas, B.A. Ovrut, D. Waldram, Lectures presented at the Advanced School on Cosmology and Particle Physics, Peniscola, Spain, June 1998, | arXiv
[32] Phys. Rev. D, 61 (2000), p. 023506
[33] Cosmological solutions of type II string theory, Phys. Lett. B, Volume 393 (1997), pp. 65-71
[34] String and M-theory cosmological solutions with Ramond forms, Nucl. Phys. B, Volume 495 (1997), pp. 365-399
[35] Stabilizing dilaton and moduli vacua in string and M-theory cosmology, Nucl. Phys. B, Volume 509 (1998), pp. 169-193
[36] Cosmological solutions of Horava–Witten theory, Phys. Rev. D, Volume 60 (1999), p. 086001
[37] Boundary inflation, Phys. Rev. D, Volume 61 (2000), p. 023506
[38] Phys. Lett. B, 476 (2000), pp. 379-386
[39] Phys. Rev. D, 63 (2001), p. 026003
[40] arXiv
|[41] arXiv
|[42] arXiv
|[43] arXiv
|[44] arXiv
|[45] arXiv
|[46] arXiv
|[47] arXiv
|[48] Nucl. Phys. B, 258 (1985), p. 46
[49] M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, Vols. 1, 2, Cambridge University Press, Cambridge
[50] Principles of Algebraic Geometry, Wiley, 1994 (p. 73)
[51] Comm. Math. Phys., 187 (1997), pp. 679-743
[53] Asian J. Math., 1 (1997) no. 214 http://math.AG/9702002
Cité par Sources :
Commentaires - Politique