[Halos et peaux dans les noyaux atomiques]
Les modifications de la structure nucléaire loin de la stabilité sont passées en revue. Les concepts de Halos et de peaux de protons et de neutrons sont présentés en s'appuyant sur de nombreux résultats expérimentaux. Des signatures des nouveaux modes collectifs attendus comme conséquences de ces structures exotiques sont aussi décrites. Ces profondes transformations de la structure des noyaux démontrent la nécessité d'étudier les orbitales des nucléons dans les noyaux instables. Ces études récentes, en particulier en ce qui concerne les informations spectroscopiques pour les noyaux à halos, sont résumées. Une modification de l'ordre des orbitales de neutrons loin de la stabilité a été observée lors de ces études. L'implication la plus spectaculaire de cette transformation est la modification des nombres magiques. Une synthèse des résultats sur la modification de la magicité est finalement présentée.
The changes in nuclear structure far from the stability line are reviewed for light nuclei. The basic concepts of neutron and proton skins and neutron halos are presented with several experimental data. Signatures of new mode of collective excitation as consequences of such exotic structures are also shown. These changes of structure point to the need for the detailed study of single-particle orbitals for unstable nuclei. Such recent studies, in particular, the spectroscopic information of halo states, are reviewed. Changes of neutron orbital ordering away from the stability line are observed from such studies. Its most profound implication has emerged in the change of magic numbers. An over view of magic number variation is presented.
Isao Tanihata 1 ; Rituparna Kanungo 1
@article{CRPHYS_2003__4_4-5_437_0, author = {Isao Tanihata and Rituparna Kanungo}, title = {Halo and skin nuclei}, journal = {Comptes Rendus. Physique}, pages = {437--449}, publisher = {Elsevier}, volume = {4}, number = {4-5}, year = {2003}, doi = {10.1016/S1631-0705(03)00065-3}, language = {en}, }
Isao Tanihata; Rituparna Kanungo. Halo and skin nuclei. Comptes Rendus. Physique, Volume 4 (2003) no. 4-5, pp. 437-449. doi : 10.1016/S1631-0705(03)00065-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00065-3/
[1] Hyperfine Interactions, 21 (1985), p. 251
[2] et al. Phys. Lett. B, 160 (1985), p. 380
[3] et al. Nucl. Phys. A, 691 (2001), p. 599
[4] Nucl. Phys. A, 693 (2001), p. 32
[5] et al. Phys. Lett. B, 289 (1992), p. 261
[6] et al. Eur. Phys. J. A, 15 (2002), p. 27
[7] et al. Phys. Rev. Lett., 75 (1995), p. 3241
[8] et al. Nucl. Phys. A, 603 (1996), p. 219
[9] et al. Nucl. Phys. A, 674 (2000), p. 330
[10] et al. Nucl. Phys. A, 709 (2002), p. 60
[11] Nucl. Phys. A, 548 (1992), p. 393
[12] Phys. Rev. C, 1994 (1994), p. 201
[13] Phys. Rev. C, 50 (1994), p. 2372
[14] Phys. Rev. Lett., 80 (1998), p. 460
[15] et al. Phys. Lett. B, 268 (1991), p. 339
[16] et al. Phys. Lett. B, 287 (1992), p. 307
[17] et al. Nucl. Phys. A, 709 (2002), p. 103
[18] Nucl. Phys. A, 543 (1992), p. 722
[19] et al. Phys. Lett. B, 334 (1994), p. 18
[20] et al. Phys. Rev. C, 65 (2002), p. 024610
[21] Europhys. Lett., 4 (1987), p. 409
[22] Nucl. Phys. A, 538 (1992), p. 355c
[23] et al. Phys. Lett. B, 232 (1989), p. 51
[24] et al. Phys. Rev. Lett., 85 (2000), p. 262
[25] Nucl. Phys. A, 538 (1992), p. 343c
[26] et al. Phys. Rev. C, 53 (1996), p. R537
[27] et al. Phys. Rev. Lett., 78 (1997), p. 2317
[28] et al. Phys. Rev. Lett., 81 (1998), p. 4325
[29] Phys. Rev. C, 66 (2002) 021002(R)
[30] Nucl. Phys. A, 689 (2001), p. 559
[31] et al. Phys. Rev. C, 48 (1993), p. 118
[32] et al. Phys. Lett. B, 348 (1995), p. 29
[33] et al. Nucl. Phys. A, 619 (1997), p. 151
[34] Nucl. Phys. A, 706 (2002), p. 48
[35] et al. Phys. Lett. B, 331 (1994), p. 296
[36] et al. Phys. Rev. C, 28 (1983), p. 497
[37] Phys. Lett. B, 53 (1974), p. 306
[38] et al. Phys. Rev. Lett., 81 (1998), p. 5089
[39] et al. Phys. Rev. C, 63 (2001), p. 024613
[40] et al. Phys. Rev. Lett., 88 (2002), p. 142502
[41] et al. Eur. Phys. J. A, 13 (2002), p. 81
[42] Phys. Lett. B, 364 (1995), p. 69
[43] et al. Phys. Rev. Lett., 83 (1999)
[44] et al. Phys. Lett. B, 461 (1999), p. 22
[45] et al. Nucl. Phys. A, 683 (2001), p. 48
[46] et al. Phys. Rev. C, 59 (1999), p. 2082
[47] et al. Phys. Rev. Lett., 84 (2000), p. 35
[48] et al. Phys. Rev. Lett., 85 (2000), p. 266
[49] et al. Phys. Rev. Lett., 86 (2001), p. 600
[50] et al. Phys. Lett. B, 491 (2000), p. 1
[51] et al. Phys. Rev. Lett., 89 (2002), p. 012501
[52] et al. Nucl. Phys. A, 658 (1999), p. 313
[53] et al. Phys. Rev. C, 12 (1975), p. 1730
[54] et al. Phys. Rev. C, 57 (1998), p. 2156
[55] et al. Phys. Rev. C, 66 (2002), p. 024607
[56] et al. Nucl. Phys. A, 704 (2002), p. 88c
[57] et al. Phys. Lett. B, 439 (1998), p. 256
[58] Ann. Rev. Nucl. Part. Sci., 38 (1988), p. 29
[59] et al. Nucl. Phys. A, 677 (2000), p. 171
[60] A. Ozawa, O. Bochkarev, L. Chulkov, et al., RIKEN-AF-NP-294 (1998)
[61] et al. Phys. Rev. Lett., 84 (2000), p. 5493
[62] Phys. Lett. B, 512 (2001), p. 261
[63] Phys. Lett. B, 528 (2002), p. 58
[64] Nucl. Phys. A, 693 (2001), p. 116
[65] et al. Phys. Rev. Lett., 83 (1999), p. 496
[66] et al. Eur. Phys. J., 13 (2002), p. 55
[67] et al. Phys. Rev. C, 18 (1978), p. 2342
[68] et al. Phys. Lett. B, 346 (1995), p. 9
[69] et al. Nucl. Phys. A, 426 (1984), p. 37
[70] et al. Phys. Rev. C, 47 (1993), p. 2941
[71] et al. Phys. Rev. Lett., 77 (1996), p. 3967
[72] et al. Phys. Lett. B, 335 (1994), p. 259
[73] et al. Phys. Rev. Lett., 72 (1994), p. 981
[74] Phys. Rev. C, 60 (1999), p. 064305
[75] et al. Phys. Lett. B, 510 (2001), p. 17
[76] et al. Phys. Rev. Lett., 87 (2001), p. 082502
[77] Nucl. Phys. A, 695 (2001), p. 167
[78] et al. Nucl. Phys. A, 701 (2002), p. 189
[79] Phys. Rev. C, 65 (2002), p. 037301
[80] et al. Phys. Rev. Lett., 84 (2000), p. 5062
[81] Nucl. Phys. A, 669 (2000), p. 81
[82] et al. Phys. Lett. B, 461 (1999), p. 22
- Neutron drip line in the deformed relativistic Hartree–Bogoliubov theory in continuum: Oxygen to Calcium, International Journal of Modern Physics E, Volume 30 (2021) no. 02, p. 2150009 | DOI:10.1142/s0218301321500099
- Search for exotic features in the ground state light nuclei with 10 ≤Z ≤ 18 from stable valley to drip lines, International Journal of Modern Physics E, Volume 28 (2019) no. 11, p. 1950101 | DOI:10.1142/s0218301319501015
- Universal aspects of light halo nuclei, Progress in Particle and Nuclear Physics, Volume 67 (2012) no. 4, p. 939 | DOI:10.1016/j.ppnp.2012.06.001
- Halo phenomenon in finite many-fermion systems: Atom-positron complexes and large-scale study of atomic nuclei, Physical Review C, Volume 79 (2009) no. 5 | DOI:10.1103/physrevc.79.054309
- Spectroscopic factors for the 9Li ground state and N=6 shell closure, Physics Letters B, Volume 660 (2008) no. 1-2, p. 26 | DOI:10.1016/j.physletb.2007.12.024
- Nuclear magic numbers: New features far from stability, Progress in Particle and Nuclear Physics, Volume 61 (2008) no. 2, p. 602 | DOI:10.1016/j.ppnp.2008.05.001
- Nuclear Halos and Experiments to Probe Them, The Euroschool Lectures on Physics with Exotic Beams, Vol. II, Volume 700 (2006), p. 1 | DOI:10.1007/3-540-33787-3_1
- Structure of the isovector dipole resonance in neutron-rich 60 Ca nuclei and direct decay from pygmy resonance, The European Physical Journal A, Volume 21 (2004) no. 3, p. 369 | DOI:10.1140/epja/i2003-10221-1
- The Why and Howof Radioactive-Beam Research, The Euroschool Lectures on Physics with Exotic Beams, Vol. I, Volume 651 (2004), p. 1 | DOI:10.1007/978-3-540-44490-9_1
Cité par 9 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier