[Emission sous champ des nanotubes de carbone]
Les nanotubes de carbone se sont récemment avérés être d'excellents systèmes pour l'émission de champ. Leur bas seuil de champ électrique pour l'émission et leur forte densité de courant d'émission les rendent intéressants pour des applications technologiques. Dans cette revue, nous présentons les récents développements sur la compréhension des nanotubes de carbone en tant qu'émetteurs sous champ ainsi que les problèmes reliés à leur utilisation comme cathodes froides dans les composants microélectroniques sous vide. L'accent est mis sur les caractéristiques de l'émission de cathodes macroscopiques et leurs relations avec les propriétés des nanotubes de carbone sous-jacentes.
Carbon nanotubes (CNT) have recently emerged as a promising class of electron field emitters. They have a low threshold electric field for emission and a high emission current density which make them attractive for technological applications. In this article we review recent progress on understanding of CNT field emitters and discuss issues related to applications of CNT-based cold cathodes in vacuum microelectronic devices. The emphasis is on the emission characteristics of macroscopic CNT cathodes and their relations with the underlying materials properties.
Mot clés : Nanotubes de carbone, Emission sous champ
Yuan Cheng 1 ; Otto Zhou 1
@article{CRPHYS_2003__4_9_1021_0, author = {Yuan Cheng and Otto Zhou}, title = {Electron field emission from carbon nanotubes}, journal = {Comptes Rendus. Physique}, pages = {1021--1033}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/S1631-0705(03)00103-8}, language = {en}, }
Yuan Cheng; Otto Zhou. Electron field emission from carbon nanotubes. Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 1021-1033. doi : 10.1016/S1631-0705(03)00103-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00103-8/
[1] Field, Thermionic and Secondary Electronemission Spectroscopy, Plenum, 1984
[2] Field Emission and Field Ionization, Harvard University Press, Cambridge, MA, 1961
[3] Vacuum microelectronics, Adv. Electron. Electron Phys., Volume 83 (1992), pp. 1-106
[4] Vacuum Micro-Electronics (W. Zhu, ed.), Wiley, 2001
[5] Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58
[6] Unraveling nanotubes: field emission from an atomic wire, Science, Volume 269 (1995), pp. 1550-1553
[7] A carbon nanotube field-emission electron source, Science, Volume 270 (1995), pp. 1179-1180
[8] Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (M.S. Dresselhaus; G. Dresselhaus; P. Avouris, eds.), Topics in Appl. Phys., 80, Springer-Verlag, Heidelberg, 2000
[9] Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett., Volume 88 (2002), p. 056804
[10] Three behavioral states observed in field emission from single-walled carbon nanotubes, J. Vac. Sci. Technol. B, Volume 17 (1999), p. 1959
[11] Experimental studies of the cap structure of single-walled carbon nanotubes, J. Vac. Sci. Technol. B, Volume 21 (2003), p. 868
[12] Effect of adsorbates on field emission from carbon nanotubes, Phys. Rev. Lett., Volume 87 (2001), p. 155502
[13] Field emission properties of multiwalled carbon nanotubes, Ultramicroscopy, Volume 73 (1998) no. 7
[14] Stability of carbon nanotubes under electric field studied by scanning electron microscopy, Appl. Phys. Lett., Volume 79 (2001) no. 27, pp. 4527-4529
[15] In-situ imaging of field emission from individual carbon nanotubes and their structural damage, Appl. Phys. Lett., Volume 80 (2002) no. 5, pp. 856-858
[16] Very high current density from carbon nanotube field emitters, Appl. Phys. Lett., Volume 75 (1999) no. 6, pp. 873-875
[17] Appl. Phys. Lett., 76 (2000), p. 375
[18] Phys. Rev. Lett., 87 (2001), p. 095504
[19] Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes, Acc. Chem. Res., Volume 35 (2002), pp. 1045-1053
[20] Large scale production of single wall carbon nanotubes by the electric arc technique, Nature, Volume 388 (1997), pp. 756-758
[21] A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett., Volume 322 (2000), pp. 321-326
[22] Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Appl. Phys. Lett., Volume 77 (2000) no. 17
[23] Large-scale synthesis of carbon nanotubes, Nature, Volume 358 (1992), p. 16
[24] Fabrication and field emission properties of carbon nanotube cathodes, Amorphous and Nanostructured Carbon, Mat. Res. Soc. Symp. Proc., 2000
[25] Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles, Appl. Phys. Lett., Volume 76 (2000) no. 26, pp. 4007-4009
[26] Electronic structure at carbon nanotube tips studied by photoemission spectroscopy, Phys. Rev. B, Volume 63 (2001), p. 2454181
[27] Work functions of pristine and alkali metal intercalated nanotubes and bundles, Phys. Rev. B, Volume 65 (2002), p. 193401
[28] Effects of Cs deposition on the field-emission properties of single-walled carbon nanotube bundles, Appl. Phys. Lett., Volume 78 (2001) no. 1, pp. 108-110
[29] Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater., Volume 13 (2001) no. 23, pp. 1770-1774
[30] Self-assembly of carbon nanotubes, Adv. Mater., Volume 14 (2002) no. 12, pp. 899-901
[31] Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly, Appl. Phys. Lett., Volume 82 (2003), p. 2521
[32] Hot nanotubes: Stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current, Phys. Rev. Lett., Volume 88 (2002) no. 10, p. 105502
[33] Modelization of resistive heating of carbon nanotubes during field emission, Phys. Rev. B, Volume 66 (2002) no. 7, p. 075406
[34] Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, Appl. Phys. Lett., Volume 81 (2002) no. 2, p. 355
[35] Applications of carbon nanotubes (M.S. Dresselhaus; G. Dresselhaus; P. Avouris, eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Topics in Applied Physics, 80), Springer-Verlag, Heidelberg, 2000, pp. 391-425
[36] Application of carbon nanotubes to field emission displays, Diamond and Related Mater., Volume 10 (2001), p. 265
[37] Application of carbon nanotubes as electrodes in gas discharge tubes, Appl. Phys. Lett., Volume 76 (2000) no. 13, pp. 1197-1199
[38] Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes, Appl. Phys. Lett., Volume 78 (2001) no. 18, p. 2775
[39] Cathode ray tube lighting elements with carbon nanotube field emitters, Jpn. J. Appl. Phys., Volume 37 (1998), p. L346-L348
[40] Appl. Phys. Lett., 72 (1998), p. 2912
[41] Appl. Phys. Lett., 75 (1999), p. 3129
[42] Technol. Dig. SID. (2000)
[43] Appl. Phys. Lett., 78 (2001), p. 1294
[44] Radiologic Science for Technologist, Mosby, 1997
[45] R.R. Whitlock, M.I. Bell, D.V. Kerns, S. Kerns, J.L. Davidson, W.P. Kang, Transmission cathodes for x-ray production, U.S. Patent 6,333,968, 2001
[46] R. Baptist, X-ray tube comprising an electron source with microtips and magnetic guiding means, U.S. Patent 6,259,765, 2001
[47] Field-emitting structures intended for a miniature x-ray source, Sensors and Actuators, Volume 82 (2000), pp. 24-29
[48] O. Zhou, J.P. Lu, New x-ray generating mechanism using electron field emission cathode, U.S. Patent Application, S/N 09/679,303, 2000
[49] Carbon nanotubes as electron source in an x-ray tube, Appl. Phys. Lett., Volume 78 (2001), p. 2578
[50] Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films, J. Mater. Res., Volume 16 (2001), pp. 3246-3253
Cité par Sources :
Commentaires - Politique