Comptes Rendus
Carbon nanotube chemistry and assembly for electronic devices
[Fonctionnalisation chimique et assemblage des nanotubes de carbone pour l'électronique]
Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 330-347.

Les nanotubes de carbone (CNTs) ont des propriétés physiques exceptionnelles qui en font l'une des briques de base les plus prometteuses des nanotechnologies. En particulier, ils peuvent jouer un rôle important pour le développement de composants électroniques innovants dans les domaines de l'électronique flexible, des détecteurs ultra-sensibles, de l'électronique haute fréquence, de l'optoélectronique, des sources d'énergie et des systèmes nano-électromécaniques (NEMS). Des démonstrations de faisabilité ont été réalisées, souvent à l'échelle du composant individuel, mais il reste de nombreux verrous à lever avant que ne puisse être évaluée la viabilité de ces composants. Le contrôle de la synthèse et celui du positionnement sont notamment critiques. Nous pensons que l'utilisation réellement innovante de ces nano-objets peut venir de (i) la combinaison de plusieurs de leurs propriétés (électriques et mécaniques par exemple) ; (ii) la combinaison de leurs propriétés avec les bénéfices additionnels apportés par d'autres molécules greffées sur les nanotubes (cette voie est particulièrement pertinente pour les détecteurs de gaz, les détecteurs de molécules biologiques, l'optoélectronique et les sources d'énergie) ; et (iii) l'utilisation de méthodes d'auto-assemblage chimiques ou bio-dirigées permettant de combiner les dispositifs en circuits. Dans cet article, nous présentons une revue de nos travaux récents concernant la chimie et l'assemblage des nanotubes et leur utilisation pour le développement de dispositifs électroniques. En particulier, nous présentons des transistors à nanotubes de carbone et leur optimisation par voie chimique, des transistors haute fréquence, des composants optoélectroniques fonctionnant comme des mémoires et des composants nano-électromécaniques. L'impact de la fonctionnalisation chimique sur les propriétés électroniques des CNTs est analysé sur la base d'études théoriques.

Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations.

Publié le :
DOI : 10.1016/j.crhy.2009.05.006
Keywords: Carbon nanotubes, Functionalization, Self-assembly, Transistors, CNTFET, NEMS
Mots-clés : Nanotubes de carbone, Fonctionnalisation, Auto-assemblage, Transistors, CNTFET, NEMS

Vincent Derycke 1 ; Stéphane Auvray 1 ; Julien Borghetti 1 ; Chia-Ling Chung 1 ; Roland Lefèvre 1 ; Alejandro Lopez-Bezanilla 2 ; Khoa Nguyen 1 ; Gaël Robert 1 ; Gregory Schmidt 1 ; Costin Anghel 1 ; Nicolas Chimot 1 ; Sébastien Lyonnais 1 ; Stéphane Streiff 1 ; Stéphane Campidelli 1 ; Pascale Chenevier 1 ; Arianna Filoramo 1 ; Marcelo F. Goffman 1 ; Laurence Goux-Capes 1 ; Sylvain Latil 3 ; Xavier Blase 4 ; François Triozon 5 ; Stephan Roche 2 ; Jean-Philippe Bourgoin 1

1 Laboratoire d'Électronique Moléculaire, Service de Physique de l'État Condensé (CNRS URA 2464), CEA, IRAMIS, 91191 Gif-sur-Yvette, France
2 SPSMS, CEA, INAC, 17, avenue des Martyrs, 38054 Grenoble, France
3 Service de Physique et Chimie des Surfaces et Interfaces, CEA, IRAMIS, 91191 Gif-sur-Yvette, France
4 Institut Néel, CNRS and université Joseph-Fourier, BP 166, 38042 Grenoble cedex 9, France
5 CEA, LETI, MINATEC, 38054 Grenoble, France
@article{CRPHYS_2009__10_4_330_0,
     author = {Vincent Derycke and St\'ephane Auvray and Julien Borghetti and Chia-Ling Chung and Roland Lef\`evre and Alejandro Lopez-Bezanilla and Khoa Nguyen and Ga\"el Robert and Gregory Schmidt and Costin Anghel and Nicolas Chimot and S\'ebastien Lyonnais and St\'ephane Streiff and St\'ephane Campidelli and Pascale Chenevier and Arianna Filoramo and Marcelo F. Goffman and Laurence Goux-Capes and Sylvain Latil and Xavier Blase and Fran\c{c}ois Triozon and Stephan Roche and Jean-Philippe Bourgoin},
     title = {Carbon nanotube chemistry and assembly for electronic devices},
     journal = {Comptes Rendus. Physique},
     pages = {330--347},
     publisher = {Elsevier},
     volume = {10},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crhy.2009.05.006},
     language = {en},
}
TY  - JOUR
AU  - Vincent Derycke
AU  - Stéphane Auvray
AU  - Julien Borghetti
AU  - Chia-Ling Chung
AU  - Roland Lefèvre
AU  - Alejandro Lopez-Bezanilla
AU  - Khoa Nguyen
AU  - Gaël Robert
AU  - Gregory Schmidt
AU  - Costin Anghel
AU  - Nicolas Chimot
AU  - Sébastien Lyonnais
AU  - Stéphane Streiff
AU  - Stéphane Campidelli
AU  - Pascale Chenevier
AU  - Arianna Filoramo
AU  - Marcelo F. Goffman
AU  - Laurence Goux-Capes
AU  - Sylvain Latil
AU  - Xavier Blase
AU  - François Triozon
AU  - Stephan Roche
AU  - Jean-Philippe Bourgoin
TI  - Carbon nanotube chemistry and assembly for electronic devices
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 330
EP  - 347
VL  - 10
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.05.006
LA  - en
ID  - CRPHYS_2009__10_4_330_0
ER  - 
%0 Journal Article
%A Vincent Derycke
%A Stéphane Auvray
%A Julien Borghetti
%A Chia-Ling Chung
%A Roland Lefèvre
%A Alejandro Lopez-Bezanilla
%A Khoa Nguyen
%A Gaël Robert
%A Gregory Schmidt
%A Costin Anghel
%A Nicolas Chimot
%A Sébastien Lyonnais
%A Stéphane Streiff
%A Stéphane Campidelli
%A Pascale Chenevier
%A Arianna Filoramo
%A Marcelo F. Goffman
%A Laurence Goux-Capes
%A Sylvain Latil
%A Xavier Blase
%A François Triozon
%A Stephan Roche
%A Jean-Philippe Bourgoin
%T Carbon nanotube chemistry and assembly for electronic devices
%J Comptes Rendus. Physique
%D 2009
%P 330-347
%V 10
%N 4
%I Elsevier
%R 10.1016/j.crhy.2009.05.006
%G en
%F CRPHYS_2009__10_4_330_0
Vincent Derycke; Stéphane Auvray; Julien Borghetti; Chia-Ling Chung; Roland Lefèvre; Alejandro Lopez-Bezanilla; Khoa Nguyen; Gaël Robert; Gregory Schmidt; Costin Anghel; Nicolas Chimot; Sébastien Lyonnais; Stéphane Streiff; Stéphane Campidelli; Pascale Chenevier; Arianna Filoramo; Marcelo F. Goffman; Laurence Goux-Capes; Sylvain Latil; Xavier Blase; François Triozon; Stephan Roche; Jean-Philippe Bourgoin. Carbon nanotube chemistry and assembly for electronic devices. Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 330-347. doi : 10.1016/j.crhy.2009.05.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.05.006/

[1] D. Tasis; N. Tagmatarchis N; A. Bianco; M. Prato Chem. Rev., 106 (2006), pp. 1105-1136

[2] M. Hersam Nature Nanotechnology, 3 (2008), pp. 387-394

[3] L. Capes, E. Valentin, S. Esnouf, A. Ribayrol, O. Jost, A. Filoramo, J.N. Patillon, Proc. IEEE Conf. on Nanotechnology, 2002, pp. 439–442

[4] G. Schmidt; S. Gallon; S. Esnouf; J.-P. Bourgoin; P. Chenevier Chem. Eur. J., 15 (2009), p. 2101

[5] S. Campidelli; B. Ballesteros; A. Filoramo; D. Díaz Díaz; G. de la Torre; T. Torres; G.M.A. Rahman; C. Ehli; D. Kiessling; F. Werner; V. Sgobba; D.M. Guldi; C. Cioffi; M. Prato; J.-P. Bourgoin J. Am. Chem. Soc., 130 (2008), p. 11503

[6] K.H. Choi; J.-P. Bourgoin; S. Auvray; D. Estève; G.S. Duesberg; S. Roth; M. Burghard Surf. Sci., 472 (2000), p. 195

[7] E. Valentin; S. Auvray; J. Goethals; J. Lewenstein; L. Capes; A. Filoramo; A. Ribayrol; R. Tsui; J.-P. Bourgoin; J.-N. Patillon Microelect. Eng., 61 (2002), pp. 491-496

[8] E. Valentin; S. Auvray; A. Filoramo; A. Ribayrol; M.F. Goffman; L. Capes; J.-P. Bourgoin; J.-N. Patillon Proc. MRS Symp., 772 (2003), pp. 201-207

[9] E. Valentin; S. Auvray; A. Filoramo; A. Ribayrol; M.F. Goffman; J. Goethals; L. Capes; J.-P. Bourgoin; J.-N. Patillon Proc. of the NATO Advanced Research Workshop on Molecular Nanowires and Other Quantum Objects (A.S. Alexandrov; J. Demsar; I.K. Yanson, eds.), NATO Science Series II, vol. 148, Springer-Verlag, Berlin, 2004, p. 57

[10] C.-L. Chung, K. Nguyen, S. Lyonnais, S. Streiff, S. Campidelli, L. Goux-Capes, J.-P. Bourgoin, A. Filoramo, AIP Proc. of the Int. Symp. on DNA-Based Nanodevices, Jena, Germany, 29–31 May 2008, ISBN: 978-0-7354-0592-9

[11] S. Lyonnais; L. Goux-Capes; C. Escudé; D. Cote; A. Filoramo; J.-P. Bourgoin Small, 4 (2008), p. 442

[12] S. Lyonnais; C.-L. Chung; L. Goux-Capes; C. Escudé; O. Piétrement; S. Baconnais; E. Le Cam; J.-P. Bourgoin; A. Filoramo Chem. Commun. (2009), p. 683

[13] S. Auvray; J. Borghetti; M.F. Goffman; A. Filoramo; V. Derycke; J.P. Bourgoin; O. Jost Appl. Phys. Lett., 84 (2004), pp. 5106-5108

[14] S. Auvray; A. Filoramo; M.F. Goffman; V. Derycke; O. Jost; J.P. Bourgoin Nano Lett., 5 (2005), p. 451

[15] J.-M. Bethoux; H. Happy; G. Dambrine; V. Derycke; M.F. Goffman; J.-P. Bourgoin IEEE Electron Device Lett., 27 (2006), pp. 681-683

[16] A. Le Louarn; F. Kapche; J.-M. Bethoux; H. Happy; G. Dambrine; V. Derycke; P. Chenevier; N. Izard; M.F. Goffman; J.-P. Bourgoin Appl. Phys. Lett., 90 (2007), p. 233108

[17] N. Chimot; V. Derycke; M.F. Goffman; J.P. Bourgoin; H. Happy; G. Dambrine Appl. Phys. Lett., 91 (2007) no. 1, p. 53111

[18] J. Borghetti; V. Derycke; S. Lenfant; P. Chenevier; A. Filoramo; M.F. Goffman; D. Vuillaume; J.-P. Bourgoin Adv. Mater., 18 (2006), pp. 2535-2540

[19] C. Anghel; V. Derycke; A. Filoramo; S. Lenfant; B. Giffard; D. Vuillaume; J.P. Bourgoin Nano Lett., 8 (2008), p. 3619

[20] R. Lefèvre; M.F. Goffman; V. Derycke; C. Miko; L. Forró; J.-P. Bourgoin; P. Hesto Phys. Rev. Lett., 95 (2005), p. 185504

[21] E. Dujardin; V. Derycke; M.F. Goffman; R. Lefèvre; J.-P. Bourgoin Appl. Phys. Lett., 87 (2005), p. 193107

[22] A. Lopez Bezanilla; F. Triozon; S. Latil; X. Blase; S. Roche Nano Lett., 9 (2009), p. 940

[23] H.C. Kolb; M.G. Finn; K.B. Sharpless Angew. Chem. Int. Ed., 40 (2001), p. 2004

[24] R. Huisgen 1,3-dipolar Cycloaddition Chemistry (A. Padwa, ed.), Wiley, New York, 1984, p. 1

[25] V.V. Rostovtsev; L.G. Green; V.V. Fokin; K.B. Sharpless Angew. Chem. Int. Ed., 41 (2002), p. 2596

[26] C.W. Tornøe; C. Christensen; M. Meldal J. Org. Chem., 67 (2002), p. 3057

[27] V.D. Bock; H. Hiemstra; J.H. van Maarseveen Eur. J. Org. Chem., 1 (2006), pp. 51-68

[28] H. Li; F. Cheng; A.M. Duft; A. Adronov J. Am. Chem. Soc., 127 (2005), p. 14518

[29] Z. Guo; L. Liang; J.-J. Liang; Y.-F. Ma; X.-Y. Yang; D.-M. Ren; Y.-S. Chen; J.-Y. Zheng J. Nanopart. Res., 10 (2008), p. 1077

[30] B.L. Allen; P.D. Kichambare; A. Star Adv. Mater., 19 (2007), p. 1439

[31] B. Ballesteros; S. Campidelli; G. de la Torre; C. Ehli; D. Guldi; M. Prato; T. Torres Chem. Commun., 28 (2007), pp. 2950-2952

[32] J.M. Simmons; I. In; V.E. Campbell; T.J. Mark; F. Léonard; P. Gopalan; M.A. Eriksson Phys. Rev. Lett., 98 (2007), p. 086802

[33] K. Balasubramanian; E.J.H. Lee; R.T. Weitz; M. Burghard; K. Kern Phys. Status Solidi A, 205 (2008), p. 633

[34] S. Latil; S. Roche; J.-C. Charlier Nano Lett., 5 (2005), p. 2216

[35] F. Tournus; S. Latil; M.I. Heggie; J.-C. Charlier Phys. Rev. B, 72 (2005), p. 075431

[36] J. Zhao; H. Park; J. Han; J. Lu J. Phys. Chem. B, 108 (2004), p. 4227

[37] H. Park; Z. Zhao; J.P. Lu Nanotechnology, 16 (2005), p. 635

[38] J. Cabana; R. Martel J. Am. Chem. Soc., 129 (2007), p. 2244

[39] M.B. Nardelli Phys. Rev. B, 60 (1999), p. 7828

[40] Y.-S. Lee; M. Buongiorno Nardelli; N. Marzari Phys. Rev. Lett., 95 (2005), p. 076804

[41] Y.-S. Lee; N. Marzari Phys. Rev. Lett., 97 (2006), p. 116801

[42] J. Liu et al. Chem. Phys. Lett., 303 (1999), p. 125

[43] J. Muster; et al.; J. Vac Sci. Tech. B, 16 (1998), p. 2796

[44] R. Krupke; F. Hennrich; H. von Lohneysen; M.M. Kappes Science, 301 (2003), pp. 344-347

[45] N.C. Seeman Nature, 421 (2003), p. 427

[46] J. Richter Physica E, 16 (2003), p. 157

[47] K. Nguyen; M. Monteverde; A. Filoramo; L. Goux-Capes; S. Lyonnais; P. Jegou; P. Viel; M. Goffman; J.-P. Bourgoin Adv. Mater., 20 (2008), p. 1099

[48] S.J. Tans; A.R.M. Verschueren; C. Dekker Nature, 393 (1998), p. 49

[49] R. Martel; T. Schmidt; H.R. Shea; T. Hertel; P. Avouris Appl. Phys. Lett., 73 (1998), p. 2447

[50] J.C. Charlier; X. Blase; S. Roche Rev. Mod. Phys., 79 (2007), p. 677

[51] A. Javey; J. Guo; D.B. Farmer; Q. Wang; E. Yenilmez; R.G. Gordon; M. Lundstrom; H. Dai Nano Lett., 4 (2004), p. 1319

[52] R.V. Seidel; A.P. Graham; J. Kretz; B. Rajasekharan; G.S. Duesberg; M. Liebau; E. Unger; F. Kreupl; W. Hoenlein Nano Lett., 5 (2005), p. 147

[53] A. Javey; P. Qi; Q. Wang; H. Dai Proc. Natl. Acad. Sci. USA, 101 (2004), p. 13408

[54] Y.M. Lin; J. Appenzeller; Z.H. Chen; Z.G. Chen; H.M. Cheng; P. Avouris IEEE Elec. Dev. Lett., 26 (2005), p. 823

[55] J. Kong; N.R. Franklin; C.W. Zhou; M.G. Chapline; S. Peng; K.J. Cho; H.J. Dai Science, 287 (2000), p. 622

[56] K. Besteman; J.O. Lee; F.G.M. Wiertz; H.A. Heering; C. Dekker Nano Lett., 3 (2003), p. 727

[57] A. Javey; J. Guo; Q. Wang; M. Lundstrom; H. Dai Nature, 424 (2003), p. 6949

[58] Z.H. Chen; J. Appenzeller; J. Knoch; Y.M. Lin; P. Avouris Nano Lett., 5 (2005), p. 1497

[59] H. Cazin d'Honincthun; S. Galdin-Retailleau; A. Bournel; Ph. Dollfus; J.-P. Bourgoin C. R. Physique, 9 (2008), pp. 67-77

[60] R. Martel; V. Derycke; C. Lavoie; J. Appenzeller; K. Chen; J. Tersoff; Ph. Avouris Phys. Rev. Lett., 87 (2001), p. 256805

[61] J. Appenzeller; J. Knoch; V. Derycke; R. Martel; S. Wind; P. Avouris Phys. Rev. Lett., 89 (2002), p. 126801

[62] S.-H. Hur; M.-H. Yoon; A. Gaur; M. Shim; A. Facchetti; T.J. Marks; J.A. Rogers J. Am. Chem. Soc., 127 (2005), p. 13808

[63] R.T. Weitz; U. Zschieschang; F. Effenberger; H. Klauk; M. Burghard; K. Kern Nano Lett., 7 (2007), pp. 22-27

[64] G. Robert; V. Derycke; M.F. Goffman; S. Lenfant; D. Vuillaume; J.-P. Bourgoin Appl. Phys. Lett., 93 (2008), p. 143117

[65] P. Avouris; M. Freitag; V. Perebeinos Top. Appl. Phys., 111 (2008), p. 423

[66] J.A. Misewich; R. Martel; P. Avouris; J.C. Tsang; S. Heinze; J. Tersoff Science, 300 (2003), p. 783

[67] M. Freitag; Y. Martin; J.A. Misewich; R. Martel; P. Avouris Nano Lett., 3 (2003), p. 1067

[68] A. Star; Y. Lu; K. Bradley; G. Gruner Nano Lett., 4 (2004), p. 1587

[69] X. Guo; L. Huang; S. O'Brien; P. Kim; C. Nuckolls J. Am. Chem. Soc., 127 (2005), p. 15045

[70] K.S. Narayan; M. Rao; R. Zhang; P. Maniar Appl. Phys. Lett., 88 (2006), p. 243507

[71] P.J. Burke Solid-State Electron., 48 (2004), p. 1981

[72] Lundstrom et al. IEEE Trans. Nanotechnol., 4 (2005), p. 1536

[73] H. Cazin d'Honincthun; H.N. Nguyen; S. Galdin-Retailleau et al. Physica E: Low Dim. Sys. & Nanostruct., 40 (2008), pp. 2294-2298

[74] S. Fregonese; H. Cazin d'Honincthun; J. Goguet et al. IEEE Trans. Elec. Dev., 55 (2008), p. 1317

[75] J. Appenzeller; D.J. Frank Appl. Phys. Lett., 84 (2004), p. 1771

[76] S. Rosenblatt; H. Lin; V. Sazonova; S. Tiwari; P.L. McEuen Appl. Phys. Lett., 87 (2005), p. 153111

[77] A.A. Pesetski; J.E. Baumgardner; E. Folk; J.X. Przybysz; J.D. Adam; H. Zhang Appl. Phys. Lett., 88 (2006), p. 113103

[78] J. Chaste; L. Lechner; P. Morfin; G. Feve; T. Kontos; J.M. Berroir; D.C. Glattli; H. Happy; P. Hakonen; B. Placais Nano Lett., 8 (2008), pp. 525-528

[79] D. Wang; Z. Yu; S. McKernan; P.J. Burke IEEE Trans. Nanotechnol., 6 (2007), pp. 400-403

[80] J.-M. Bethoux; H. Happy; A. Siligaris; G. Dambrine; J. Borghetti; V. Derycke; J.-P. Bourgoin IEEE Trans. Nanotechnol., 5 (2006), p. 335

[81] K. Bradley; J.C.P. Gabriel; G. Gruner Nano Lett., 3 (2003), p. 1353

[82] E. Artukovic; M. Kaempgen; D.S. Hecht; S. Roth; G. Gruner Nano Lett., 5 (2005), p. 757

[83] Q. Cao; S.H. Hur; Z.T. Zhu; Y. Sun; C. Wang; M.A. Meitl; M. Shim; J.A. Rogers Adv. Mater., 18 (2006), p. 304

[84] S.J. Kang; C. Kocabas; T. Ozel; M. Shim; N. Pimparkar; M.A. Alam; S.V. Rotkin; J.A. Rogers Nat. Nanotechnol., 2 (2007), p. 230

[85] H.C. Yuan; Z. Ma Appl. Phys. Lett., 89 (2006), p. 212105

[86] J.H. Ahn; H.S. Kim; K.J. Lee; Z. Zhu; E. Menard; R.G. Nuzzo; J.A. Rogers IEEE Electron. Dev. Lett., 27 (2006), p. 460

[87] Y. Sun; E. Menard; J.A. Rogers; H.S. Kim; S. Kim; G. Chen; I. Adesida; R. Dettmer; R. Cortez; A. Tewksbury Appl. Phys. Lett., 88 (2006), p. 183509

[88] A.N. Cleland Foundations of Nanomechanics, Springer-Verlag, Berlin, 2003

[89] D. Garcia-Sanchez et al. Phys. Rev. Lett., 99 (2007), p. 085501

[90] M.F. Goffman; N. Chimot; E. Mile; M.C. Monteverde; J.-P. Bourgoin; V. Derycke Proc. SPIE, 7037 (2008), p. 703702

[91] L.M. Jonsson; T. Nord; J.M. Kinaret; S. Viefers J. Appl. Phys., 96 (2004), p. 629

  • Santanu Kumar Nayak; Padmaja Patnaik; Dipan Kumar Das; Siddharth Parthasarathy; Niharika Das; Subhraraj Panda Crafting Nanotubes From Atoms, Discovery, Disruption, and Future Implications of Nanomaterials (2024), p. 1 | DOI:10.4018/979-8-3693-4397-5.ch001
  • Victoria Ivanova; Ahmet Şenocak; Darya Klyamer; Erhan Demirbas; Saad Makhseed; Pavel Krasnov; Tamara Basova; Mahmut Durmuş 3D hybrid materials based on zinc and cobalt phthalocyanine derivatives bearing terminal ethynyl substituents as active layers for chemiresistive gas sensors, Sensors and Actuators B: Chemical, Volume 398 (2024), p. 134733 | DOI:10.1016/j.snb.2023.134733
  • Nagy L. Torad; Ahmed A.M. El‐Amir; Fathy M. Hassan; Amira A. El‐Maddah; Wael A. Amer; Mohamad M. Ayad Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions, Solvent‐Free Methods in Nanocatalysis (2023), p. 181 | DOI:10.1002/9783527831463.ch6
  • Guangzu Zhao; Saranya Chandrudu; Mariusz Skwarczynski; Istvan Toth The application of self-assembled nanostructures in peptide-based subunit vaccine development, European Polymer Journal, Volume 93 (2017), p. 670 | DOI:10.1016/j.eurpolymj.2017.02.014
  • Alejandro Lopez-Bezanilla; Stephan Roche; Eduardo Cruz-Silva; Bobby G. Sumpter; Vincent Meunier Electronic Transport in Carbon Nanomaterials, Encyclopedia of Nanotechnology (2016), p. 1084 | DOI:10.1007/978-94-017-9780-1_406
  • Xiaobo Zou; Jiewen Zhao Electronic Nose Measurements, Nondestructive Measurement in Food and Agro-products (2015), p. 195 | DOI:10.1007/978-94-017-9676-7_5
  • Michele Penza; Philip J. Martin; John T. W. Yeow Carbon Nanotube Gas Sensors, Gas Sensing Fundamentals, Volume 15 (2014), p. 109 | DOI:10.1007/5346_2014_59
  • A. Ndiaye; J. Brunet; C. Varenne; P. Bonnet; A. Pauly; M. Dubois; K. Guerin; B. Lauron Functionalized Carbon Nanotubes-Based Gas Sensors for Pollutants Detection: Investigation on the Use of a Double Transduction Mode, Key Engineering Materials, Volume 605 (2014), p. 75 | DOI:10.4028/www.scientific.net/kem.605.75
  • S. Ramakrishnan; E. Johny Jelmy; M. Dhakshnamoorthy; Murali Rangarajan; Nikhil Kothurkar Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe–Mo Catalyst, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Volume 44 (2014) no. 6, p. 873 | DOI:10.1080/15533174.2013.796977
  • Reza Fareghi-Alamdari; Mohsen Golestanzadeh; Farima Agend; Negar Zekri Regiospecific, one-pot, and pseudo-five-component synthesis of 6,6′-(arylmethylene)bis(2-(tert-butyl)4-methylphenol) antioxidants using highly sulfonated multi-walled carbon nanotubes under solvent-free conditions, Canadian Journal of Chemistry, Volume 91 (2013) no. 10, p. 982 | DOI:10.1139/cjc-2013-0160
  • REZA FAREGHI-ALAMDARI; MOHSEN GOLESTANZADEH; FARIMA AGEND; NEGAR ZEKRI Synthesis, characterization and catalytic activity of sulphonated multi-walled carbon nanotubes as heterogeneous, robust and reusable catalysts for the synthesis of bisphenolic antioxidants under solvent-free conditions, Journal of Chemical Sciences, Volume 125 (2013) no. 5, p. 1185 | DOI:10.1007/s12039-013-0476-9
  • Alejandro Lopez-Bezanilla Electronic Transport Properties of Chemically Modified Double-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, Volume 117 (2013) no. 29, p. 15266 | DOI:10.1021/jp402355x
  • Amadou Ndiaye; Pierre Bonnet; Alain Pauly; Marc Dubois; Jérôme Brunet; Christelle Varenne; Katia Guerin; Bernard Lauron Noncovalent Functionalization of Single-Wall Carbon Nanotubes for the Elaboration of Gas Sensor Dedicated to BTX Type Gases: The Case of Toluene, The Journal of Physical Chemistry C, Volume 117 (2013) no. 39, p. 20217 | DOI:10.1021/jp402787f
  • Shuxiu Shi; Hui Wang; Xitao Wang; Tao Xue; Weixin Hou; Lan Cui; Kui Lin; Fengmin Jin; Gang Cheng; Xiaoping Chen; Pei Yao; Shen Cui High Yield Preparation of Carbon Nanotube Arrays of Good Quality by CVD, Chemical Vapor Deposition, Volume 18 (2012) no. 7-9, p. 201 | DOI:10.1002/cvde.201106975
  • Yong Hong Guo; Bao Min Sun; Zhao Yong Ding; Jin Sheng Bi; Bin Jia Catalyst Study for Carbon Nanotubes Synthesis by Flame, Advanced Materials Research, Volume 213 (2011), p. 562 | DOI:10.4028/www.scientific.net/amr.213.562
  • Zhao Yong Ding; Bao Min Sun; Jin Sheng Bi; Xiao Lian Ding Purification of Carbon Nanotubes Synthesized by Pyrolysis Flame, Key Engineering Materials, Volume 492 (2011), p. 493 | DOI:10.4028/www.scientific.net/kem.492.493
  • Zhao Yong Ding; Bao Min Sun; Bin Jia; Xiao Lian Ding Flame Synthesis of Carbon Nanotubes and Nanocapsules, Materials Science Forum, Volume 688 (2011), p. 116 | DOI:10.4028/www.scientific.net/msf.688.116
  • Zhao Yong Ding; Bao Min Sun; Yong Hong Guo; Bing Hao Xu Effects of Sampling Substrate for Carbon Nanotubes Synthesis, Advanced Materials Research, Volume 129-131 (2010), p. 1341 | DOI:10.4028/www.scientific.net/amr.129-131.1341
  • Zhao Yong Ding; Bao Min Sun; Yuan Chao Liu; Bing Hao Xu; Yong Hong Guo Pyramid Shaped Pyrolysis Flame Catalyst Synthesis of Carbon Nanotubes, Advanced Materials Research, Volume 177 (2010), p. 421 | DOI:10.4028/www.scientific.net/amr.177.421
  • E.S. Jang; J.C. Goak; H.S. Lee; S.H. Lee; J.H. Han; C.S. Lee; J.H. Sok; Y.H. Seo; K.S. Park; N.S. Lee Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters, Applied Surface Science, Volume 256 (2010) no. 22, p. 6838 | DOI:10.1016/j.apsusc.2010.04.098
  • Pengqu Zhang; Yonggong Zhan; Bingxin Cai; Chenchun Hao; Jun Wang; Chunxiao Liu; Zhoujun Meng; Zhoulan Yin; Qiyuan Chen Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue, Nano Research, Volume 3 (2010) no. 4, p. 235 | DOI:10.1007/s12274-010-1026-0
  • Alejandro Lopez-Bezanilla; Xavier Blase; Stephan Roche Quantum transport properties of chemically functionalized long semiconducting carbon nanotubes, Nano Research, Volume 3 (2010) no. 4, p. 288 | DOI:10.1007/s12274-010-1032-2
  • W S Zhao; G Agnus; V Derycke; A Filoramo; J-P Bourgoin; C Gamrat Nanotube devices based crossbar architecture: toward neuromorphic computing, Nanotechnology, Volume 21 (2010) no. 17, p. 175202 | DOI:10.1088/0957-4484/21/17/175202
  • Guillaume Agnus; Arianna Filoramo; Stéphane Lenfant; Dominique Vuillaume; Jean‐Philippe Bourgoin; Vincent Derycke High‐Speed Programming of Nanowire‐Gated Carbon‐Nanotube Memory Devices, Small, Volume 6 (2010) no. 23, p. 2659 | DOI:10.1002/smll.201001293

Cité par 24 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: