Comptes Rendus
Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique
Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 701-713.

Un grand nombre de contributions scientifiques ces dernières années proposent de véhiculer et manipuler l'information par des objets quantiques uniques. Tandis que des perspectives extrêmement impressionnantes sont projetées théoriquement, les réalisations expérimentales sont limitées en raison des insuffisances technologiques des dispositifs que l'état de l'art peut offrir à l'information quantique. Cet article présente des recherches visant à proposer des dispositifs semiconducteurs sources de photons uniques ou de photons jumeaux efficaces, qui permettraient de lever un verrou technologique important dans ce domaine.

A large number of scientific proposals in recent years are based on transport and manipulation of information using single quantum objects. Although very impressive theoretical perspectives have been envisaged, experimental demonstrations are still limited due to technological difficulties with present state-of-the-art devices. This paper presents various approaches aiming at efficient single or twin photons semiconductor sources. The emergence of these devices will be an important technological breakthrough in the field of quantum information.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(03)00109-9
Mot clés : Source de photons uniques, Source de photons jumeaux, Information quantique, Boı̂te quantique, Effet Purcell, Fluorescence paramétrique, Accord de phase modal
Keywords: Single photon source, Twin photons source, Quantum information, Quantum dot, Purcell effect, Parametric fluorescence, Modal phase matching
Vincent Berger 1, 2 ; Jean-Michel Gérard 3

1 « Matériaux et phénomènes quantiques », Université Paris 7 – Denis Diderot, case 7021, 2, place Jussieu, 75251 Paris cedex 5, France
2 THALES research & technology, domaine de Corbeville, 91404 Orsay cedex, France
3 Équipe mixte CEA-CNRS-UJF « nanophysique et semiconducteurs », CEA/DRFMC/SP2M, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
@article{CRPHYS_2003__4_6_701_0,
     author = {Vincent Berger and Jean-Michel G\'erard},
     title = {Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique},
     journal = {Comptes Rendus. Physique},
     pages = {701--713},
     publisher = {Elsevier},
     volume = {4},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00109-9},
     language = {fr},
}
TY  - JOUR
AU  - Vincent Berger
AU  - Jean-Michel Gérard
TI  - Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 701
EP  - 713
VL  - 4
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00109-9
LA  - fr
ID  - CRPHYS_2003__4_6_701_0
ER  - 
%0 Journal Article
%A Vincent Berger
%A Jean-Michel Gérard
%T Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique
%J Comptes Rendus. Physique
%D 2003
%P 701-713
%V 4
%N 6
%I Elsevier
%R 10.1016/S1631-0705(03)00109-9
%G fr
%F CRPHYS_2003__4_6_701_0
Vincent Berger; Jean-Michel Gérard. Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique. Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 701-713. doi : 10.1016/S1631-0705(03)00109-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00109-9/

[1] W. Tittel; G. Ribordy; N. Gisin Quantum cryptography, Physics World, Volume 11 (1998), p. 41 (special issue on Quantum Information)

[2] N. Gisin; G. Ribordy; W. Tittel; H. Zbinden Quantum cryptography, Rev. Mod. Phys., Volume 74 (2002), p. 145

[3] A. Zeilinger Experiment and the foundation of quantum physics, Rev. Mod. Phys., Volume 71 (1999), p. 288

[4] N. Cerf; N. Gisin Les promesses de l'information quantique, La Recherche, Volume 327 (2000), p. 46

[5] C.H. Bennett; D.P. DiVincenzo Quantum information computation, Nature, Volume 404 (2000), p. 247

[6] D. Bouwmeester; A. Ekert; A. Zeilinger The Physics of Quantum Information, Springer, Berlin, 2000

[7] G. Ribordy; J.D. Gauthier; N. Gisin; O. Guinnard; H. Zbinden Fast and user-friendly quantum key distribution, J. Mod. Opt., Volume 47 (2000), p. 517

[8] G. Brassard; N. Lütkenhaus; T. Mor; B.C. Sanders Limitations on practical quantum cryptography, Phys. Rev. Lett., Volume 85 (2000), p. 1330

[9] G. Ribordy; J. Brendel; J.D. Gauthier; N. Gisin; H. Zbinden Long-distance entanglement-based quantum key distribution, Phys. Rev. A, Volume 63 (2001), p. 012309

[10] J. Kim; O. Benson; H. Kan; Y. Yamamoto A single-photon turnstile device, Nature, Volume 397 (1999), p. 500

[11] T. Basché; W.E. Moerner; M. Orrit; H. Talon Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett., Volume 69 (1992), p. 1516

[12] B. Lounis; W.E. Moerner Single photons on demand from a single molecule at room temperature, Nature, Volume 407 (2000), p. 491

[13] C. Kurtsiefer; S. Mayer; P. Zarda; H. Weinfurter Stable solid-state source of single photons, Phys. Rev. Lett., Volume 89 (2000), p. 290

[14] A. Beveratos; R. Brouri; T. Gacoin; A. Villing; J.P. Poizat; P. Grangier Single photon quantum cryptography, Phys. Rev. Lett., Volume 89 (2002), p. 187901

[15] P. Michler; A. Imamoglu; M. Mason; P. Carson; G. Strouse; S. Buratto Quantum correlations among photons from a single quantum dot at room temperature, Nature, Volume 406 (2000), p. 968

[16] X. Brokmann; J.P. Hermier; G. Messin; P. Desbiolles; J.-P. Bouchaud; M. Dahan Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett., Volume 90 (2003), p. 120601

[17] P. Michler; A. Kiraz; C. Becher; W. Schoenfeld; P.M. Petroff; L. Zhang; E. Hu; A. Imamoglu A quantum dot single photon turnstile, Science, Volume 290 (2000), p. 2282

[18] C. Santori; M. Pelton; G. Solomon; Y. Dale; Y. Yamamoto Triggered single photons from a quantum dot, Phys. Rev. Lett., Volume 86 (2001), p. 1502

[19] E. Moreau; I. Robert; J.M. Gérard; I. Abram; L. Manin; V. Thierry-Mieg Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett., Volume 79 (2001), p. 2865

[20] Z. Yuan; B. Kardynal; R. Stevenson; A. Shields; C. Lobo; K. Coopper; N. Beattie; D. Ritchie; M. Pepper Electrically driven single photon source, Science, Volume 295 (2002), p. 102

[21] J.M. Gérard; B. Gayral Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, J. Lightwave Technology, Volume 17 (1999), p. 2089

[22] E. Moreau; I. Robert; L. Manin; V. Thierry-Mieg; J.M. Gérard; I. Abram Quantum cascade of photons in semiconductor quantum dots, Phys. Rev. Lett., Volume 87 (2001), p. 183601

[23] C. Kammerer; C. Voisin; G. Cassabois; C. Delalande; Ph. Roussignol; F. Klopf; J.P. Reithmaier; A. Forchel; J.M. Gérard Line narrowing in single semiconductor quantum dots: Toward the control of environment effects, Phys. Rev. B, Volume 66 (2002), p. (R)041306

[24] D. Kulakovskii; G. Bacher; R. Weigand; T. Kümmell; A. Forchel; E. Borovitskaya; K. Leonardi; D. Hommel Fine structure of Biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots, Phys. Rev. Lett., Volume 82 (1999), p. 1780

[25] W. Barnes; G. Björk; J.M. Gérard; P. Jonsson; J. Wasey; P. Worthing; V. Zwiller Solid state single photon sources: light collection strategies, Eur. Phys. J. D, Volume 18 (2002), p. 197

[26] E. Yablonovitch Photonic bandgap structures, J. Opt. Soc. Am. B, Volume 10 (1993), p. 283

[27] J.M. Gérard; B. Sermage; B. Gayral; E. Costard; V. Thierry-Mieg Enhanced spontaneous emission for InAs quantum boxes in a monolithic optical microcavity, Phys. Rev. Lett., Volume 81 (1998), p. 1110

[28] B. Gayral; J.M. Gérard; B. Sermage; A. Lemaı̂tre; C. Dupuis Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks, Appl. Phys. Lett., Volume 78 (2001), p. 2828

[29] J.Y. Marzin; J.M. Gérard; A. Izraël; D. Barrier; G. Bastard Photoluminescence of single quantum dots obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), p. 716

[30] M.V. Artemyev; U. Woggon; R. Wannemacher; H. Jaschinski; W. Langbein Quantum dots in photonic dots, Nano Lett., Volume 1 (2001), p. 309

[31] T. Guillet; J. Berréhar; R. Grousson; J. Kovensky; C. Lapersonne-Meyer; M. Schott; V. Voliotis Emission of a single conjugated polymer chain isolated in its single crystal monomer matrix, Phys. Rev. Lett., Volume 87 (2001), p. 087401

[32] C. Santori; D. Fattal; M. Pelton; G.S. Solomon; Y. Yamamoto Indistinguishable photons from a single-photon device, Nature, Volume 419 (2002), p. 594

[33] A.K. Ekert; J.G. Rarity; P.R. Tapster; G.M. Palma Practical quantum cryptography based on two-photon interferometry, Phys. Rev. Lett., Volume 69 (1992), p. 1293

[34] P.R. Tapster; J.G. Rarity; P.C.M. Owens Violation of Bell's inequality over km of optical fiber, Phys. Rev. Lett., Volume 73 (1994), p. 1923

[35] P.G. Kwiat; K. Mattle; H. Weinfurter; A. Zeilinger; A.V. Sergienko; Y. Shih New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett., Volume 75 (1995), p. 4337

[36] D. Bouwmeester; J.W. Pan; K. Mattle; M. Eibl; H. Weinfurter; A. Zeilinger Experimental quantum teleportation, Nature, Volume 390 (1997), p. 575

[37] W. Tittel; J. Brendel; H. Zbinden; N. Gisin Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett., Volume 81 (1998), p. 3563

[38] G. Weihs; T. Jennewein; C. Simon; H. Weinfurter; A. Zeilinger Violation of Bell's inequality under strict Einstein locality conditions, Phys. Rev. Lett., Volume 81 (1998), p. 5039

[39] J.W. Pan; D. Bouwmeester; M. Daniell; H. Weinfurter; A. Zeilinger Experimental test of quantum nonlocality in three-photon Greemberger–Horne–Zellinger entanglement, Nature, Volume 403 (2000), p. 515

[40] A. Yariv Quantum Electronics, Wiley, 1991

[41] V. Berger Nonlinear photonic crystals, Phys. Rev. Lett., Volume 81 (1998), p. 4136

[42] A. Fiore; V. Berger; E. Rosencher; P. Bravetti; J. Nagle Phase matching using an isotropic nonlinear optical material, Nature, Volume 391 (1998), p. 463

[43] A. De Rossi; V. Berger Counterpropagating twin photons by parametric fluorescence, Phys. Rev. Lett., Volume 88 (2002), p. 043901

[44] A. De Rossi; N. Semaltianos; V. Berger; B. Vinter Third order mode optically pumped semiconductor laser, Appl. Phys. Lett., Volume 80 (2002), p. 4690

[45] A. De Rossi; V. Berger; M. Calligaro; G. Leo; V. Ortiz; X. Marcadet Parametric fluorescence in oxidized aluminium gallium arsenide waveguides, Appl. Phys. Lett., Volume 79 (2001), p. 3758

[46] V. Berger, Brevet, Laser à générations paramétriques, N national 9912303

[47] M.M. Fejer; G.A. Magel; D.H. Jundt; R.L. Byer Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., Volume 28 (1992), p. 2631

[48] O. Levi; T.J. Pinguet; T. Skauli; L.A. Eyres; K.R. Parameswaran; J.S. Harris; M.M. Fejer; B. Gerard; E. Lallier; L. Becouarn Difference frequency generation of 8 μm radiation in orientation-patterned GaAs, Opt. Lett., Volume 27 (2002), p. 2091

[49] J.S. Tanzilli, Optique intégrée pour les communications quantiques, Thèse de l'Université de Nice, 2002

[50] G. Leo, Thèse de l'Université de Paris XI, 2001

[51] G. Leo; M. Secondini; M. Morabito; A. De Rossi; G. Assanto; A. Fiore; V. Berger; M. Calligaro; J. Nagle Birefringence evaluation of multimode multilayer AlGaAs/AlAs waveguides, Appl. Phys. Lett., Volume 78 (2001), p. 1472

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Les boı̂tes quantiques semi-conductrices : des atomes artificiels pour l'optique quantique

Jean-Michel Gérard; E. Moreau; I. Robert; ...

C. R. Phys (2002)