[Étude de la structure de bande électronique de nanotubes de carbone isolés sous 60 T]
Les nano-sciences, et plus particulièrement la nano-physique, constituent un champ d'investigations aux défis expérimentaux multiples incluant la synthèse, l'adressage (par exemple, optique ou électrique), l'étude et l'exploitation des propriétés physiques remarquables des nano-objets individuels. Les nano-matériaux carbonés (hybridation
Nano-sciences, and in particular nano-physics, constitute a fascinating world of investigations where the experimental challenges are to synthesize, to address (for instance optically or electrically) to explore and promote the remarkable physical properties of new nano-materials. Somehow, one of the most promising realization of nano-sciences lies in carbon-based nano-materials with
Mots-clés : Nanotubes de carbone, Champ magnétique intense, Conductivité électronique
Sébastien Nanot 1 ; Walter Escoffier 1 ; Benjamin Lassagne 1 ; Jean-Marc Broto 1 ; Bertrand Raquet 1
@article{CRPHYS_2009__10_4_268_0, author = {S\'ebastien Nanot and Walter Escoffier and Benjamin Lassagne and Jean-Marc Broto and Bertrand Raquet}, title = {Exploring the electronic band structure of individual carbon nanotubes under 60 {T}}, journal = {Comptes Rendus. Physique}, pages = {268--282}, publisher = {Elsevier}, volume = {10}, number = {4}, year = {2009}, doi = {10.1016/j.crhy.2009.05.005}, language = {en}, }
TY - JOUR AU - Sébastien Nanot AU - Walter Escoffier AU - Benjamin Lassagne AU - Jean-Marc Broto AU - Bertrand Raquet TI - Exploring the electronic band structure of individual carbon nanotubes under 60 T JO - Comptes Rendus. Physique PY - 2009 SP - 268 EP - 282 VL - 10 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2009.05.005 LA - en ID - CRPHYS_2009__10_4_268_0 ER -
%0 Journal Article %A Sébastien Nanot %A Walter Escoffier %A Benjamin Lassagne %A Jean-Marc Broto %A Bertrand Raquet %T Exploring the electronic band structure of individual carbon nanotubes under 60 T %J Comptes Rendus. Physique %D 2009 %P 268-282 %V 10 %N 4 %I Elsevier %R 10.1016/j.crhy.2009.05.005 %G en %F CRPHYS_2009__10_4_268_0
Sébastien Nanot; Walter Escoffier; Benjamin Lassagne; Jean-Marc Broto; Bertrand Raquet. Exploring the electronic band structure of individual carbon nanotubes under 60 T. Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 268-282. doi : 10.1016/j.crhy.2009.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.05.005/
[1] Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (G.D.A. Jorio; G. Dresselhaus; M.S. Dresselhaus, eds.), Springer, 2008
[2] Electronic and transport properties of nanotubes, Rev. Mod. Phys., Volume 79 (2007), p. 677
[3] Electron transport in single-wall carbon nanotube weak links in the Fabry–Perot regime, Phys. Rev. Lett., Volume 96 (2007), p. 207003
[4] Fabry–Perot interference in a nanotube electron waveguide, Nature, Volume 411 (2001), p. 665
[5] Kondo physics in carbon nanotubes, Nature, Volume 408 (2000), p. 342
[6] Electron–hole symmetry in semiconducting carbon nanotube quantum dot, Nature, Volume 429 (2004), p. 389
[7] Disorder, pseudospins and backscattering in carbon nanotubes, Phys. Rev. Lett., Volume 83 (1999), p. 5098
[8] Phonons and electron–phonon in carbon nanotubes, Phys. Rev. B, Volume 65 (2002), p. 235412
[9] High field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett., Volume 84 (2000), p. 2941
[10] Charge transport in carbon nanotubes: quantum effects of electron–phonon coupling, J. Phys.: Condens. Matter, Volume 19 (2007), p. 183203
[11] Helicity and electron-correlation effects on transport properties of double-walled carbon nanotubes, Phys. Rev. Lett., Volume 95 (2005), p. 266802
[12] Electrical transport in carbon nanotubes: Role of disorder and helical symmetries, Phys. Rev. B, Volume 69 (2004), p. 121410
[13] Determination of the intershell conductance in multiwalled carbon nanotubes, Phys. Rev. Lett., Volume 93 (2004), p. 176806
[14] Electronic transport spectroscopy of carbon nanotubes in a magnetic field, Phys. Rev. Lett., Volume 94 (2005), p. 156802
[15] Four-electron shell structures and an intercating two-electron system in carbon nanotube quantum dots, Phys. Rev. Lett., Volume 94 (2005), p. 186806
[16] Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature, Volume 452 (2008), p. 448
[17] Effect of band structure on quantum interference in multiwalled carbon nanotubes, Phys. Rev. Lett., Volume 94 (2005), p. 186802
[18] Observation of the Aharonov–Bohm effect in hollow metal cylinders, JETP Lett., Volume 35 (1982), p. 588
[19] Observation of h/e Aharonov–Bohm oscillations in normal-metal rings, Phys. Rev. Lett., Volume 54 (1985), p. 2696
[20] Orbital signatures of the Aharonov–Bohm phase in single-wall carbon nanotubes, Science, Volume 304 (2004), p. 1129
[21] Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett., Volume 94 (2005), p. 066801
[22] Electrons in artificial atoms, Nature, Volume 379 (1996), p. 413
[23] Low Temperature Physics at the Laboratoire National des Champs Magnétiques Pulsés in Toulouse, J. Low Temp. Phys., Volume 131 (2003), p. 97
[24] The fluctuation–dissipation theorem, Rep. Prog. Phys., Volume 29 (1966), p. 255
[25] Quantum interference of electrons in multiwall carbon nanotubes, Phys. Rev. B, Volume 60 (1999), p. 13492
[26] Magnetoresistance and differential conductance in multiwalled carbon nanotubes, Phys. Rev. B, Volume 61 (2000), p. 16362
[27] Comment on magnetoresistance and differential conductance in multiwalled carbon nanotubes, Phys. Rev. B, Volume 64 (2001), p. 157401
[28] Aharonov–Bohm oscillations in carbon nanotubes, Nature, Volume 397 (1999), p. 673
[29] Magnetic flux effects in disordered conductors, Rev. Mod. Phys., Volume 59 (1987), p. 755
[30] Purification and size-selection of carbon nanotubes, Adv. Mater., Volume 9 (1997), p. 827
[31] Electronic states of carbon nanotubes, J. Phys. Soc. Jpn., Volume 62 (1993), p. 1255
[32] Energy bands of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn., Volume 65 (1996), p. 505
[33] Significance of electromagnetic potentials in the quantum theory, Phys. Rev., Volume 115 (1959), p. 485
[34] Aharonov–Bohm spectral features and coherence lengths in carbon nanotubes, Phys. Rev. B, Volume 62 (2000), p. 16092
[35] Magnetoelectronic and optical properties of carbon nanotubes, Phys. Rev. B, Volume 67 (2003), p. 045405
[36] h/e magnetic flux modulation of the energy gap in nanotube quantum dots, Science, Volume 304 (2004), p. 1132
[37] Aharonov–Bohm interference and beating in single-walled carbon nanotube interferometers, Phys. Rev. Lett., Volume 93 (2004), p. 216803
[38] Aharonov–Bohm conductance modulation in ballistic carbon nanotubes, Phys. Rev. Lett., Volume 98 (2007), p. 176802
[39] Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett., Volume 80 (2002), p. 2773
[40] Magnetically induced field effect in carbon nanotube devices, Nano Lett., Volume 7 (2007), p. 960
[41] Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett., Volume 89 (2002), p. 106801
[42] Quantum interference in multiwall carbon nanotubes, Semicond. Sci. Technol., Volume 21 (2006), p. S38
[43] Determination of electron orbital magnetic moments in carbon nanotubes, Nature, Volume 428 (2004), p. 536
[44] Electronic Transport in Mesoscopic System, Cambridge University Press, 1998
[45] Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), p. 197
[46] Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, Volume 438 (2005), p. 201
[47] Quantum Hall effect in carbon nanotubes and curved graphene strips, Phys. Rev. B, Volume 76 (2007), p. 125430
[48] Magnetic energy bands of carbon nanotubes, Phys. Rev. B, Volume 50 (1994), p. 14698
[49] Supersymmetry in carbon nanotubes in a transverse magnetic field, Phys. Rev. B, Volume 68 (2003), p. 155402
[50] Hofstadter butterflies of carbon nanotubes: pseudofractality of the magnetoelectronic spectrum, Phys. Rev. B, Volume 74 (2006), p. 165411
[51] Low dimensional quantum transport properties of chemically disordered carbon nanotubes: from weak to strong localisation regimes, Mod. Phys. Lett. B, Volume 21 (2007), p. 1955
[52] Chemical disorder strength in carbon nanotubes: magnetic tuning of quantum transport regimes, Phys. Rev. B, Volume 74 (2006), p. 121406(R)
[53] Onset of the Landau level formation in carbon nanotubes-based electronic Fabry–Perot resonators, Phys. Rev. Lett., Volume 101 (2008), p. 046803
[54] S. Nanot, R. Avriller, W. Escoffier, J.-M. Broto, S. Roche, B. Raquet, Propagative Landau states in multiwall carbon nanotubes, submitted for publication
- Properties of Carbon Nanotubes, Handbook of Nanomaterials Properties (2014), p. 1 | DOI:10.1007/978-3-642-31107-9_24
- Cylindric quantum wires in a threading magnetic field: A proposal of characterization based on zero bias electron transport, Journal of Applied Physics, Volume 112 (2012) no. 12 | DOI:10.1063/1.4770431
- Landau levels and edge states in carbon nanotubes: A semiclassical approach, Physical Review B, Volume 84 (2011) no. 23 | DOI:10.1103/physrevb.84.233403
- Landau levels and edge states in a cylindrical two-dimensional electron gas: A semiclassical approach, Physical Review B, Volume 82 (2010) no. 20 | DOI:10.1103/physrevb.82.205305
- Propagative Landau States and Fermi Level Pinning in Carbon Nanotubes, Physical Review Letters, Volume 103 (2009) no. 25 | DOI:10.1103/physrevlett.103.256801
Cité par 5 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier