[L'évolution primitive de la ceinture de Kuiper et l'acquisition de sa structure actuelle]
Comprendre comment la ceinture de Kuiper a acquit sa structure actuelle apporterait également une nouvelle compréhension de la formation et de l'évolution précoce du Système Solaire externe. Nous traçons les grandes lignes d'un scénario cohérent – issu de la combinaison de plusieurs mécanismes déjà proposés dans la littérature – qui pourrait expliquer la plupart des propriétés observées de la ceinture de Kuiper. Certains aspects ne sont pas totalement clairs, et d'autres ne sont peut-être pas totalement corrects. Mais, pour la première fois on commence à entrevoir la suite des événements qui ont donné à la ceinture de Kuiper sa forme actuelle.
Understanding how the Kuiper belt acquired its puzzling present orbital structure will provide insight into the formation of the outer planetary system and on its early evolution. We outline a scenario of primordial sculpting – issued from a combination of mechanisms proposed by various authors – that seems to explain most of the observed properties of the Kuiper belt. Several aspects are not yet totally clear, and some may not be totally correct. But, for the first time, we have a view – if not of the detailed sculpture – at least of its rough cast.
Mot clés : ceinture de Kuiper, structure orbitale
Alessandro Morbidelli 1 ; Hal F. Levison 2
@article{CRPHYS_2003__4_7_809_0, author = {Alessandro Morbidelli and Hal F. Levison}, title = {The primordial sculpting of the {Kuiper} belt}, journal = {Comptes Rendus. Physique}, pages = {809--817}, publisher = {Elsevier}, volume = {4}, number = {7}, year = {2003}, doi = {10.1016/j.crhy.2003.10.001}, language = {en}, }
Alessandro Morbidelli; Hal F. Levison. The primordial sculpting of the Kuiper belt. Comptes Rendus. Physique, Volume 4 (2003) no. 7, pp. 809-817. doi : 10.1016/j.crhy.2003.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.001/
[1] From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets, Icarus, Volume 127 (1997), pp. 13-32
[2] Scattered comet disk and the origin of Jupiter family comets, Science, Volume 276 (1997), pp. 1670-1672
[3] The long-term stability of orbits in the Kuiper belt, Astron. J., Volume 110 (1995), pp. 3073-3083
[4] On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper belt, Astron. J., Volume 112 (1996), pp. 1203-1210
[5] The Mauna–Kea–Cerro–Totlolo (MKCT) Kuiper belt and Centaur survey, Astron. J., Volume 112 (1996), pp. 1225-1232
[6] Keck pencil-beam survey for faint Kuiper belt objects, Astron. J., Volume 118 (1999), pp. 1411-1422
[7] The radial distribution of the Kuiper belt, Astroph. J., Volume 554 (2001), pp. 95-98
[8] The structure of the Kuiper belt: Size distribution and radial extent, Astron. J., Volume 122 (2001), pp. 1051-1066
[9] Accretion in the Edgeworth–Kuiper belt: Forming 100–1000 Km radius bodies at 30 AU and beyond, Astron. J., Volume 114 (1997), pp. 841-849
[10] Accretion in the early Kuiper belt: I. Coagulation and velocity evolution, Astron. J., Volume 115 (1998), pp. 2136-2160
[11] Accretion in the early Kuiper belt: II. Fragmentation, Astron. J., Volume 118 (1999), pp. 1101-1119
[12] Accretion in the early outer Solar system, Astrophys. J., Volume 526 (1999), pp. 465-470
[13] The orbit of Pluto, The Observatory, Volume 85 (1965), pp. 43-44
[14] The phase space structure near Neptune resonances in the Kuiper belt, Astron. J., Volume 111 (1996), pp. 504-512
[15] Properties of the trans-Neptunian belt: Statistics from the Canada–France–Hawaii telescope survey, Astron. J., Volume 122 (2001), pp. 457-473
[16] The inclination distribution of the Kuiper belt, Astron. J., Volume 121 (2001), pp. 2804-2814
[17] On the size dependence of the inclination distribution of the main Kuiper belt, Astron. J., Volume 121 (2001), pp. 1730-1735
[18] The Caltech wide area sky survey: beyond (50000) quaoar, Proceedings of the First Decadal Review of the Edgeworth–Kuiper Belt Meeting in Antofagasta Chile, Earth Moon and Planets, 2003 (in press)
[19] Extremely red Kuiper-belt objects in near-circular orbits beyond 40 AU, Nature, Volume 407 (2000), pp. 979-981
[20] Multicolor photometry of trans-Neptunian objects, Icarus, Volume 154 (2001), pp. 277-286
[21] A correlation between inclination and color in the classical Kuiper belt, Astrophys. J., Volume 566 (2002), pp. 125-128
[22] The edge of the Solar system, Astrophys. J., Volume 549 (2001), p. L241-L244
[23] Observational limits on a distant cold Kuiper belt, Astron. J., Volume 124 (2002), pp. 2949-2954
[24] Evidence for an extended scattered disk, Icarus, Volume 157 (2002), pp. 269-279
[25] The Kuiper belt and the primordial evolution of the Solar system (Festou et al., eds.), Comet II, University Arizona Press, Tucson, AZ, 2003 (in press)
[26] Orbital expansion and resonant trapping during the late accretion stages of the outer planets, Pl. Sp. Sci., Volume 44 (1996), pp. 431-439
[27] The origin of Pluto's peculiar orbit, Nature, Volume 365 (1993), pp. 819-821
[28] The origin of Pluto's orbit: Implications for the Solar system beyond Neptune, Astron. J., Volume 110 (1995), pp. 420-432
[29] Capture into resonance – An extension of the use of adiabatic invariants, Cel. Mech., Volume 27 (1982), pp. 3-22
[30] Planetary migration and Plutino orbital inclinations, Astron. J., Volume 120 (2000), pp. 2695-2707
[31] The origin of the Kuiper belt high inclination population, Icarus (2003) (in press)
[32] Orbital evolution of planets embedded in a planetesimal disk, Astron. J., Volume 117 (1999), pp. 3041-3053
[33] The existence of a planet beyond 50 AU and the orbital distribution of the classical Edgeworth–Kuiper belt objects, Icarus (2002) (in press)
[34] R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU?, 2003, in press
[35] Formation of planetesimals/cometesimals in the Solar nebula (Festou et al., eds.), Comet II, University Arizona Press, Tucson, AZ, 2003
[36] Evidence for early stellar encounters in the orbital distribution of Edgeworth–Kuiper belt objects, Astroph. J., Volume 528 (2000), pp. 351-356
[37] The effects of a stellar encounter on a planetesimal disk, Icarus, Volume 153 (2001), pp. 416-429
[38] The edge of the Edgeworth–Kuiper belt: Stellar encounter, trans-Plutonian planet or outer limit of the primordial Solar nebula?, Asteroid, Comet, Meteors, ESA Spec. Publ. Ser., 2002, pp. 305-308
[39] H.F. Levison, A. Morbidelli, L. Dones, Forming the outer edge of the Kuiper belt by a stellar encounter: Constrints from the oort cloud, 2003, in preparation
[40] The formation of a star cluster: Predicting the properties of stars and brown dwarfs, MNRAS, Volume 339 (2003), pp. 577-599
[41] Collisional cascades in planetesimal disks. I. Stellar flybys, Astron. J., Volume 2002 (2002), pp. 1757-1775
[42] A. Morbidelli, H.F. Levison, Scenarios for the origin of an extended trans-Neptunian scattered disk, 2003, in preparation
[43] Neptune scattered planetesimals could have sculpted the primordial Edgeworth–Kuiper belt, Icarus, Volume 128 (1997), pp. 464-468
[44] Large scattered planetesimals and the excitation of the small body belts, Icarus, Volume 141 (1999), pp. 367-387
[45] Sweeping secular resonances in the Kuiper belt caused by depletion of the Solar nebula, Astron. J., Volume 120 (2000), pp. 3311-3322
[46] Collisional erosion in the primordial Edgeworth–Kuiper belt and the generation of the 30–50 AU Kuiper gap, Astroph. J., Volume 490 (1997), pp. 879-885
[47] Collisional evolution of Edgeworth–Kuiper belt objects, Icarus, Volume 125 (1997), pp. 50-60
[48] Collisional erosion of a massive Edgeworth–Kuiper belt: Constraints on the initial population, Lunar Planet. Science Conf., Volume 29 (1998), pp. 1437-1438
[49] J.M. Petit, O. Mousis, KBO binaries: are they really primordial? Icarus, 2003, submitted
[50] H.F. Levison, A. Morbidelli, Pushing out the Kuiper belt, Nature, 2003, in press
Cité par Sources :
Commentaires - Politique