[Modélisation quantitative des spectres de réflectance des objets de la ceinture de Kuiper et des Centaures]
La spectroscopie de réflectance des corps du système solaire est un moyen très efficace pour déterminer la composition de leurs surfaces (minéraux, glaces, composants carbonés, et matériaux composés de macromolécules). Des modèles basés sur les théories de transfert radiatif simulent la diffusion de la lumière solaire sur la surface planétaire solide, ce qui permet alors de contraindre quantitativement la composition, l'abondance et l'état physique des matériaux présents sur la surface ainsi que sa microstructure. Les théories de diffusion d'Hapke et de Shkuratov qui sont communément utilisées pour modéliser les données spectrales des objets de Kuiper, des Centaures, et d'autres corps solides du système solaire sont discutées et comparées. Les deux théories sont alors utilisées pour reproduire les spectres du Centaure Pholus 5145. Le même mélange constitué de 5 composants (glaces, un composant carboné, un silicate, et un composant organique) permet de reproduire le spectre de cet objet avec les deux théories, cependant les abundances différent de manière importante.
Reflectance spectroscopy of Solar System bodies provides a rich source of information on their compositions (minerals, ices, metals, and macromolecular carbon-bearing materials). Models calculated with radiative transfer theories for the spectral distribution of diffusely scattered sunlight from planetary surfaces yield information on the compositions, abundances, physical states, layering, and particle microstructure of those surfaces. We discuss and evaluate the scattering theories of Hapke and Shkuratov that are widely used for modeling the reflectance spectra and color data for Kuiper Belt objects, Centaur objects, and other airless bodies in the Solar System. Both theories yield good models of the reflectance spectrum of Centaur 5145 Pholus using five components (ices, carbon, a silicate mineral, and a complex organic material), although the derived abundances differ widely.
Mot clés : objets de Kuiper, objets Centaures, Diffusion de la lumière, Spectroscopie
Dale P. Cruikshank 1 ; Ted L. Roush 1 ; François Poulet 2
@article{CRPHYS_2003__4_7_783_0, author = {Dale P. Cruikshank and Ted L. Roush and Fran\c{c}ois Poulet}, title = {Quantitative modeling of the spectral reflectance of {Kuiper} {Belt} objects and {Centaurs}}, journal = {Comptes Rendus. Physique}, pages = {783--789}, publisher = {Elsevier}, volume = {4}, number = {7}, year = {2003}, doi = {10.1016/j.crhy.2003.10.007}, language = {en}, }
TY - JOUR AU - Dale P. Cruikshank AU - Ted L. Roush AU - François Poulet TI - Quantitative modeling of the spectral reflectance of Kuiper Belt objects and Centaurs JO - Comptes Rendus. Physique PY - 2003 SP - 783 EP - 789 VL - 4 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2003.10.007 LA - en ID - CRPHYS_2003__4_7_783_0 ER -
Dale P. Cruikshank; Ted L. Roush; François Poulet. Quantitative modeling of the spectral reflectance of Kuiper Belt objects and Centaurs. Comptes Rendus. Physique, Volume 4 (2003) no. 7, pp. 783-789. doi : 10.1016/j.crhy.2003.10.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.007/
[1] Near-infrared spectra of outer solar system surfaces: Remote determination of H2O ice temperatures, Icarus, Volume 142 (1999), pp. 536-549
[2] Composition, physical state and distribution of ices at the surface of Triton, Icarus, Volume 139 (1999), pp. 159-178
[3] Bidirectional reflectance spectroscopy, 1. Theory, J. Geophys. Res., Volume 96 (1981), pp. 3039-3054
[4] Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, New York, 1993
[5] A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus, Volume 137 (1999), pp. 235-246
[6] The composition of Centaur 5145 Pholus, Icarus, Volume 135 (1998), pp. 389-497
[7] E. Dotto, M.A. Barucci, C. de Bergh, Colours and composition of the Centaurs, in: J.K. Davies, L. Barrera (Eds.), Kuiper Belt Volume, Kluwer, Dordrecht (in press)
[8] Water ice on Kuiper Belt object 1996 TO66, Astrophys. J. Lett., Volume 519 (1999), p. L101-L104
[9] Near-infrared spectroscopy of the bright Kuiper Belt object 2000 EB173, Astrophys. J. Lett., Volume 543 (2000), p. L163-L165
[10] Quantitative abundance estimates from bi-directional reflectance measurements, J. Geophys. Res., Volume 92 (1987), pp. 617-626
[11] Photometric phase functions of common geologic materials and applications to quantitative analysis of mineral mixture reflectance spectra, J. Geophys. Res., Volume 94 (1989), pp. 13619-13634
[12] Estimation of grain sizes and mixing ratios of fine powder mixture of common geologic minerals, J. Geophys. Res., Volume 99 (1994), pp. 10867-10880
[13] Quantitative analysis of laboratory mineral mixture spectra by nonlinear spectral mixing modeling, J. Geophys. Res. (2003) (submitted)
[14] Decoding the domino: The dark side of Iapetus, Icarus, Volume 149 (2001), pp. 160-172
[15] Charon: More than water ice?, Icarus, Volume 108 (1994), pp. 243-254
[16] Radiative Transfer, Dover, New York, 1960
[17] A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes, J. Geophys. Res., Volume 105 (2000), pp. 29290-29314
[18] Comparison between the Shkuratov and Hapke scattering theories for solid planetary surfaces: Application to the surface composition of two Centaurs, Icarus, Volume 160 (2002), pp. 313-324
[19] Bidirectional reflectance spectroscopy. III. Correction for macroscopic-roughness, Icarus, Volume 59 (1984), pp. 41-59
[20] Solar System Ices (B. Schmitt; C. de Bergh; M. Festou, eds.), Kluwer Academic, Dordrecht, 1998, p. 655
[21] Multiple Light Scattering, Academic Press, New York, 1980
[22] The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., Volume 183 (1987), pp. 371-391
[23] Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., Volume 27 (1988), pp. 2502-2509
[24] A multilayer bi-directional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths, J. Geophys. Res., Volume 103 (1998), pp. 31367-31390
[25] Scattering of light by composite particles in a planetary surface, Icarus, Volume 130 (1997), pp. 328-335
[26] Scattering properties of natural snow and frost-comparison with icy satellite photometry, Icarus, Volume 88 (1990), pp. 418-428
[27] Effects of hyperfine particles on reflectance spectra from 0.3 to 25 microns, Icarus, Volume 125 (1997), pp. 145-163
[28] Scattering properties of planetary regolith analogs, Lunar Planet. Sci., Volume XXXIII (2002) (abstract 1171)
[29] Size-dependent measurements of the scattering properties of planetary regolith analogs: A challenge to theory, Lunar Planet. Sci., Volume XXXIV (2003) (abstract 1440)
[30] Colours in metal glasses and in metallic films, Phil. Trans. R. Soc. London A, Volume 203 (1904), pp. 385-420
[31] Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitätskonstanten und Leitfähighkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. (Leipzig), Volume 24 (1935), pp. 636-679
[32] Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983
[33] Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft X-ray to microwave frequencies, Icarus, Volume 60 (1984), pp. 127-137
Cité par Sources :
Commentaires - Politique