[Le CMB A, B, C, , W et au-delà (P !)]
Dans cette note d'introduction pour le volume des Comptes Rendus Physique, je décris l'ABC de la physique du fond de rayonnement fossile à 3K (CMB) qui explique pourquoi les observations très précises du spectre du CMB ainsi que de sa structure spatiale constituent un outil unique pour déterminer les paramètres cosmologiques globaux et pour simultanément contraindre la physique de l'univers primordial. Puis, je rappelle succintement les nombreuses expériences, Archeops, Boomerang, COBE mais aussi DASI, CBI, MAXIMA, pour n'en nommer que quelques unes, qui ont mesuré les anisotropies du CMB et ont permis des avancées cruciales en cosmologie observationnelle. La série de nouveau résultats à un rythme assez frénétique a récemment culminée avec le satellite WMAP qui a confirmé les mesures précédentes, établit de nouveaux standards de précision, et suggéré que l'Univers a pu être réionisé plus tôt que prévu. Beaucoup d'autres expériences sont en cours ou à venir, dont le satellite Planck à l'horizon 2007 qui devrait extraire des anisotropies de température toute l'information cosmologique utilisable, et apporter une contribution fondamentale à la mesure de la polarisation du CMB.
In this introductory note to the issue of the Comptes Rendus Physique, I describe the ABC of Cosmic Microwave Background (CMB) physics, which explains why high accuracy observations of the CMB spectrum and of its spatial structure are unique tools for the determination of the global cosmological parameters and for simultaneously constraining the physics of the early universe. I also briefly survey the many experiments, Archeops, Boomerang, COBE but also DASI, CBI, MAXIMA, to name but a few, which have measured the anisotropies of the CMB and led to crucial advances in observational cosmology. The somewhat frantic series of new results has recently culminated with the outcome of the WMAP satellite, which confirmed earlier results, set new standards of accuracy, and suggested that the Universe may have re-ionised earlier than anticipated. Many more CMB experiments are currently taking data or being planned, with the Planck satellite on the 2007 Horizon poised to extract all the cosmological information in the temperature anisotropies, and foray deeply into polarisation.
Mot clés : Anisotropies du fond de rayonnement cosmique, Cosmologie, Univers primordial
François R. Bouchet 1
@article{CRPHYS_2003__4_8_823_0, author = {Fran\c{c}ois R. Bouchet}, title = {CMB: {A,} {B,} {C,}$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, {W} and beyond {(P!)}}, journal = {Comptes Rendus. Physique}, pages = {823--832}, publisher = {Elsevier}, volume = {4}, number = {8}, year = {2003}, doi = {10.1016/j.crhy.2003.10.017}, language = {en}, }
François R. Bouchet. CMB: A, B, C,$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, W and beyond (P!). Comptes Rendus. Physique, Volume 4 (2003) no. 8, pp. 823-832. doi : 10.1016/j.crhy.2003.10.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.017/
[1] Nature, 162 (1948), p. 774
[2] The spectral results of the far-infrared absolute spectrophotometer instrument on COBE, Astrophys. J., Volume 581 (2002), pp. 817-822
[3] First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Supp., Volume 148 (2003), pp. 1-27
[4] First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Supp., Volume 148 (2003), pp. 175-194
[5] Astrophys. J., 147 (1967), p. 73
[6] CMB temperature and polarization anisotropy fundamentals, Ann. Phys., Volume 303 (2003), pp. 203-225
[7] Large scale density inhomogeneities in the Universe, Nature, Volume 217 (1968), p. 511
[8] Rees–Sciama effect in a cold dark matter Universe, Astrophys. J., Volume 460 (1996), p. 549
[9] Astrophys. Space Sci., 4 (1969), p. 301
[10] Formation of clusters of galaxies; Protocluster fragmentation and intergalactic gas heating, Astron. Astrophys., Volume 20 (1972), p. 189
[11] The velocity of clusters of galaxies relative to the microwave background – the possibility of its measurement, Mon. Not. R. Astron. Soc., Volume 190 (1980), pp. 413-420
[12] Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation, Astrophys. J. Lett., Volume 306 (1986), p. L51-L54
[13] Reionization and small-scale fluctuations in the microwave background, Astrophys. J., Volume 322 (1987), pp. 597-604
[14] Reionization and its imprint of the cosmic microwave background, Astrophys. J., Volume 439 (1995), pp. 503-516
[15] CMB anisotropies in the weak coupling limit, Astron. Astrophys., Volume 315 (1996), pp. 33-39
[16] Ionization by early quasars and cosmic microwave background anisotropies, Astron. Astrophys., Volume 311 (1996), pp. 1-11
[17] Secondary cosmic microwave background anisotropies in a Universe reionized in patches, Astrophys. J., Volume 508 (1998), pp. 435-439
[18] Phys. Rev. Lett., 81 (1998)
[19] Erratum: Ionization by early quasars and cosmic microwave background anisotropies, Astron. Astrophys., Volume 341 (1999), p. 640
[20] Sunyaev–Zel'dovich constraints from black hole-seeded proto-galaxies, Astron. Astrophys., Volume 357 (2000), pp. 1-6
[21] F. Pajot, Ph.D. thesis, Paris VII University
[22] Future cosmic microwave background experiments (1999) | arXiv
[23] Inflation and the cosmic microwave background, Proceedings of the New Cosmology Summer School, 2003 | arXiv
Cité par Sources :
Commentaires - Politique