Comptes Rendus
CMB: A, B, C,, W and beyond (P!)
[Le CMB A, B, C, , W et au-delà (P !)]
Comptes Rendus. Physique, Volume 4 (2003) no. 8, pp. 823-832.

Dans cette note d'introduction pour le volume des Comptes Rendus Physique, je décris l'ABC de la physique du fond de rayonnement fossile à 3K (CMB) qui explique pourquoi les observations très précises du spectre du CMB ainsi que de sa structure spatiale constituent un outil unique pour déterminer les paramètres cosmologiques globaux et pour simultanément contraindre la physique de l'univers primordial. Puis, je rappelle succintement les nombreuses expériences, Archeops, Boomerang, COBE mais aussi DASI, CBI, MAXIMA, pour n'en nommer que quelques unes, qui ont mesuré les anisotropies du CMB et ont permis des avancées cruciales en cosmologie observationnelle. La série de nouveau résultats à un rythme assez frénétique a récemment culminée avec le satellite WMAP qui a confirmé les mesures précédentes, établit de nouveaux standards de précision, et suggéré que l'Univers a pu être réionisé plus tôt que prévu. Beaucoup d'autres expériences sont en cours ou à venir, dont le satellite Planck à l'horizon 2007 qui devrait extraire des anisotropies de température toute l'information cosmologique utilisable, et apporter une contribution fondamentale à la mesure de la polarisation du CMB.

In this introductory note to the issue of the Comptes Rendus Physique, I describe the ABC of Cosmic Microwave Background (CMB) physics, which explains why high accuracy observations of the CMB spectrum and of its spatial structure are unique tools for the determination of the global cosmological parameters and for simultaneously constraining the physics of the early universe. I also briefly survey the many experiments, Archeops, Boomerang, COBE but also DASI, CBI, MAXIMA, to name but a few, which have measured the anisotropies of the CMB and led to crucial advances in observational cosmology. The somewhat frantic series of new results has recently culminated with the outcome of the WMAP satellite, which confirmed earlier results, set new standards of accuracy, and suggested that the Universe may have re-ionised earlier than anticipated. Many more CMB experiments are currently taking data or being planned, with the Planck satellite on the 2007 Horizon poised to extract all the cosmological information in the temperature anisotropies, and foray deeply into polarisation.

Publié le :
DOI : 10.1016/j.crhy.2003.10.017
Keywords: Cosmic Microwave Background Anisotropies, Cosmology, Early Universe
Mot clés : Anisotropies du fond de rayonnement cosmique, Cosmologie, Univers primordial
François R. Bouchet 1

1 Institut d'astrophysique de Paris, CNRS, 98 bis, boulevard Arago, 75014 Paris, France
@article{CRPHYS_2003__4_8_823_0,
     author = {Fran\c{c}ois R. Bouchet},
     title = {CMB: {A,} {B,} {C,}$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, {W} and beyond {(P!)}},
     journal = {Comptes Rendus. Physique},
     pages = {823--832},
     publisher = {Elsevier},
     volume = {4},
     number = {8},
     year = {2003},
     doi = {10.1016/j.crhy.2003.10.017},
     language = {en},
}
TY  - JOUR
AU  - François R. Bouchet
TI  - CMB: A, B, C,$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, W and beyond (P!)
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 823
EP  - 832
VL  - 4
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2003.10.017
LA  - en
ID  - CRPHYS_2003__4_8_823_0
ER  - 
%0 Journal Article
%A François R. Bouchet
%T CMB: A, B, C,$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, W and beyond (P!)
%J Comptes Rendus. Physique
%D 2003
%P 823-832
%V 4
%N 8
%I Elsevier
%R 10.1016/j.crhy.2003.10.017
%G en
%F CRPHYS_2003__4_8_823_0
François R. Bouchet. CMB: A, B, C,$ \text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}$, W and beyond (P!). Comptes Rendus. Physique, Volume 4 (2003) no. 8, pp. 823-832. doi : 10.1016/j.crhy.2003.10.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.017/

[1] R.A. Alpher; R. Herman Nature, 162 (1948), p. 774

[2] D.J. Fixsen; J.C. Mather The spectral results of the far-infrared absolute spectrophotometer instrument on COBE, Astrophys. J., Volume 581 (2002), pp. 817-822

[3] C.L. Bennett; M. Halpern; G. Hinshaw; N. Jarosik; A. Kogut; M. Limon; S.S. Meyer; L. Page; D.N. Spergel; G.S. Tucker; E. Wollack; E.L. Wright; C. Barnes; M.R. Greason; R.S. Hill; E. Komatsu; M.R. Nolta; N. Odegard; H.V. Peiris; L. Verde; J.L. Weiland First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Supp., Volume 148 (2003), pp. 1-27

[4] D.N. Spergel; L. Verde; H.V. Peiris; E. Komatsu; M.R. Nolta; C.L. Bennett; M. Halpern; G. Hinshaw; N. Jarosik; A. Kogut; M. Limon; S.S. Meyer; L. Page; G.S. Tucker; J.L. Weiland; E. Wollack; E.L. Wright First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Supp., Volume 148 (2003), pp. 175-194

[5] R.K. Sachs; A.M. Wolfe Astrophys. J., 147 (1967), p. 73

[6] W. Hu CMB temperature and polarization anisotropy fundamentals, Ann. Phys., Volume 303 (2003), pp. 203-225

[7] M.J. Rees; D.W. Sciama Large scale density inhomogeneities in the Universe, Nature, Volume 217 (1968), p. 511

[8] U. Seljak Rees–Sciama effect in a cold dark matter Universe, Astrophys. J., Volume 460 (1996), p. 549

[9] Y.B. Zel'dovich; R.A. Sunyaev Astrophys. Space Sci., 4 (1969), p. 301

[10] R.A. Sunyaev; Y.B. Zel'dovich Formation of clusters of galaxies; Protocluster fragmentation and intergalactic gas heating, Astron. Astrophys., Volume 20 (1972), p. 189

[11] R.A. Sunyaev; I.B. Zel'dovich The velocity of clusters of galaxies relative to the microwave background – the possibility of its measurement, Mon. Not. R. Astron. Soc., Volume 190 (1980), pp. 413-420

[12] J.P. Ostriker; E.T. Vishniac Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation, Astrophys. J. Lett., Volume 306 (1986), p. L51-L54

[13] E.T. Vishniac Reionization and small-scale fluctuations in the microwave background, Astrophys. J., Volume 322 (1987), pp. 597-604

[14] S. Dodelson; J.M. Jubas Reionization and its imprint of the cosmic microwave background, Astrophys. J., Volume 439 (1995), pp. 503-516

[15] W. Hu; M. White CMB anisotropies in the weak coupling limit, Astron. Astrophys., Volume 315 (1996), pp. 33-39

[16] N. Aghanim; F.X. Désert; J.L. Puget; R. Gispert Ionization by early quasars and cosmic microwave background anisotropies, Astron. Astrophys., Volume 311 (1996), pp. 1-11

[17] A. Gruzinov; W. Hu Secondary cosmic microwave background anisotropies in a Universe reionized in patches, Astrophys. J., Volume 508 (1998), pp. 435-439

[18] S.R. Knox; L. Dodelson; D. Dodelson Phys. Rev. Lett., 81 (1998)

[19] N. Aghanim; F.X. Désert; J.L. Puget; R. Gispert Erratum: Ionization by early quasars and cosmic microwave background anisotropies, Astron. Astrophys., Volume 341 (1999), p. 640

[20] N. Aghanim; C. Balland; J. Silk Sunyaev–Zel'dovich constraints from black hole-seeded proto-galaxies, Astron. Astrophys., Volume 357 (2000), pp. 1-6

[21] F. Pajot, Ph.D. thesis, Paris VII University

[22] M. Halpern; D. Scott Future cosmic microwave background experiments (1999) | arXiv

[23] C.H. Lineweaver Inflation and the cosmic microwave background, Proceedings of the New Cosmology Summer School, 2003 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Cosmological implications from the observed properties of CMB

Alain Blanchard; James Bartlett; Marian Douspis

C. R. Phys (2003)


Polarization experiments

Jacques Delabrouille; Jean Kaplan; Michel Piat; ...

C. R. Phys (2003)


Extragalactic contributions to the CMB signal

Guilaine Lagache; Nabila Aghanim

C. R. Phys (2003)